2,784 research outputs found

    A Critical Analysis of the Training of the Homeroom Music Teacher

    Get PDF
    A study of the background and development of the teaching of homeroom music shows that there is an ever-increasing need for an understanding of the many problems which face the administrators, the teachers, and the teacher education institutions. This study of the training of the homeroom music teacher was made for the purpose of defining and analyzing these problems, as they apply to situations in the state of Washington, and determining, from the opinions of teachers and principals now concerned with the situation, what might be best done to improve present conditions in order to insure effective continuation of the elementary school music program toward its aims and ideals

    Profiles of Coronary Artery Disease Risk in Cardiac Patients: Actual versus Perceived

    Get PDF
    PURPOSE: To describe interrelations and differences between actual vs. perceived cardiac risk in a cohort of coronary artery disease (CAD) patients. METHODS: 33 females (HT: 164 cm, WT: 80kg) and 67 males (HT: 179 cm, WT: 93kg) with documented CAD completed a questionnaire designed to assess CAD risk perception. They also underwent assessments for all ACSM risk factors. Five-point Likert scale responses to the question “Compared to other persons of your own age and sex, how would you rate your risk of ever having a heart attack?” were used to quantify CAD risk perception. To quantify actual risk, the number of ACSM risk markers for each subject was tabulated. It should be noted that, since all of the subjects had active CAD, they were all at high risk. Tabulations and Likert scale responses were compared using Chi-square analysis or Fisher’s Exact test with significance accepted at p\u3c0.05. To assess risk perception accuracy, Chi-square analysis with pre-determined expected cell count percentages was used. RESULTS: When compared to diagnosis driven expected frequencies of risk perception being higher or much higher (75% and 25% respectively), patients responses were only 30% and 11% respectively (Chi-square=19696.9, p\u3c.0001). Also, as the number of actual ACSM risk markers increased for each patient, no increase in patient risk perception was found (Chi-square=40.2, p=0.29). Factors associated with accurate perception include age, resting ECG status, and number of bypass grafts. Factors that were not accurately included in risk perception include family history, waist circumference, number and type of angioplasties, smoking, having had a heart attack, number of additional structural cardiac abnormalities present, the presence of arrhythmias, elevated blood lipids and blood glucose, and elevated systolic and diastolic blood pressures. CONCLUSION: Although substantial differences in number and type of actual cardiac risk exist in a cohort of cardiac patients, individual perception of these risks is not accurate in the majority of cases

    Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets

    Get PDF
    T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation. © 2009 Kim, Maly

    Red riding on hood: Exploring how galaxy colour depends on environment

    Get PDF
    Galaxy populations are known to exhibit a strong colour bimodality, corresponding to blue star-forming and red quiescent subpopulations. The relative abundance of the two populations has been found to vary with stellar mass and environment. In this paper, we explore the effect of environment considering different types of measurements. We choose a sample of 49,91149, 911 galaxies with 0.05<z<0.180.05 < z < 0.18 from the Galaxy And Mass Assembly survey. We study the dependence of the fraction of red galaxies on different measures of the local environment as well as the large-scale "geometric" environment defined by density gradients in the surround- ing cosmic web. We find that the red galaxy fraction varies with the environment at fixed stellar mass. The red fraction depends more strongly on local environmental measures than on large-scale geometric environment measures. By comparing the different environmental densities, we show that no density measurement fully explains the observed environmental red fraction variation, suggesting the different measures of environmental density contain different information. We test whether the local environmental measures, when combined together, can explain all the observed environmental red fraction variation. The geometric environment has a small residual effect, and this effect is larger for voids than any other type of geometric environment. This could provide a test of the physics applied to cosmological-scale galaxy evolution simulations as it combines large-scale effects with local environmental impact.Comment: Accepted for publication in MNRAS; 16 pages; 10 figures; 2 tables

    Local thermodynamics and the generalized Gibbs-Duhem equation in systems with long-range interactions

    Get PDF
    The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems

    Spatial and topological organization of DNA chains induced by gene co-localization

    Get PDF
    Transcriptional activity has been shown to relate to the organization of chromosomes in the eukaryotic nucleus and in the bacterial nucleoid. In particular, highly transcribed genes, RNA polymerases and transcription factors gather into discrete spatial foci called transcription factories. However, the mechanisms underlying the formation of these foci and the resulting topological order of the chromosome remain to be elucidated. Here we consider a thermodynamic framework based on a worm-like chain model of chromosomes where sparse designated sites along the DNA are able to interact whenever they are spatially close-by. This is motivated by recurrent evidence that there exists physical interactions between genes that operate together. Three important results come out of this simple framework. First, the resulting formation of transcription foci can be viewed as a micro-phase separation of the interacting sites from the rest of the DNA. In this respect, a thermodynamic analysis suggests transcription factors to be appropriate candidates for mediating the physical interactions between genes. Next, numerical simulations of the polymer reveal a rich variety of phases that are associated with different topological orderings, each providing a way to increase the local concentrations of the interacting sites. Finally, the numerical results show that both one-dimensional clustering and periodic location of the binding sites along the DNA, which have been observed in several organisms, make the spatial co-localization of multiple families of genes particularly efficient.Comment: Figures and Supplementary Material freely available on http://dx.doi.org/10.1371/journal.pcbi.100067

    The Hubble Space Telescope Wide Field Camera 3 Early Release Science data: Panchromatic Faint Object Counts for 0.2-2 microns wavelength

    Get PDF
    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098M (Ys), F125W (J), and F160W (H) with 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50 square arcmin at 0.2-1.7 {\mu}m in wavelength at 0.07-0.15" FWHM resolution and 0.090" Multidrizzled pixels to depths of AB\simeq 26.0-27.0 mag (5-{\sigma}) for point sources, and AB\simeq 25.5-26.5 mag for compact galaxies. In this paper, we describe: a) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics; b) the procedure of generating object catalogs across the 10 different ERS filters, and the specific star-galaxy separation techniques used; and c) the reliability and completeness of the object catalogs from the WFC3 ERS mosaics. The excellent 0.07-0.15" FWHM resolution of HST/WFC3 and ACS makes star- galaxy separation straightforward over a factor of 10 in wavelength to AB\simeq 25-26 mag from the UV to the near-IR, respectively.Comment: 51 pages, 71 figures Accepted to ApJS 2011.01.2

    GAMA: towards a physical understanding of galaxy formation

    Full text link
    The Galaxy And Mass Assembly (GAMA) project is the latest in a tradition of large galaxy redshift surveys, and is now underway on the 3.9m Anglo-Australian Telescope at Siding Spring Observatory. GAMA is designed to map extragalactic structures on scales of 1kpc - 1Mpc in complete detail to a redshift of z~0.2, and to trace the distribution of luminous galaxies out to z~0.5. The principal science aim is to test the standard hierarchical structure formation paradigm of Cold Dark Matter (CDM) on scales of galaxy groups, pairs, discs, bulges and bars. We will measure (1) the Dark Matter Halo Mass Function (as inferred from galaxy group velocity dispersions); (2) baryonic processes, such as star formation and galaxy formation efficiency (as derived from Galaxy Stellar Mass Functions); and (3) the evolution of galaxy merger rates (via galaxy close pairs and galaxy asymmetries). Additionally, GAMA will form the central part of a new galaxy database, which aims to contain 275,000 galaxies with multi-wavelength coverage from coordinated observations with the latest international ground- and space-based facilities: GALEX, VST, VISTA, WISE, HERSCHEL, GMRT and ASKAP. Together, these data will provide increased depth (over 2 magnitudes), doubled spatial resolution (0.7"), and significantly extended wavelength coverage (UV through Far-IR to radio) over the main SDSS spectroscopic survey for five regions, each of around 50 deg^2. This database will permit detailed investigations of the structural, chemical, and dynamical properties of all galaxy types, across all environments, and over a 5 billion year timeline.Comment: GAMA overview which appeared in the October 2009 issue of Astronomy & Geophysics, ref: Astron.Geophys. 50 (2009) 5.1

    Bio-energy retains its mitigation potential under elevated CO2

    Get PDF
    Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e. 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink

    The Tides They are A-Changin\u27: A Comprehensive Review of Past and Future Nonastronomical Changes in Tides, Their Driving Mechanisms, and Future Implications

    Get PDF
    Scientists and engineers have observed for some time that tidal amplitudes at many locations are shifting considerably due to nonastronomical factors. Here we review comprehensively these important changes in tidal properties, many of which remain poorly understood. Over long geological time scales, tectonic processes drive variations in basin size, depth, and shape and hence the resonant properties of ocean basins. On shorter geological time scales, changes in oceanic tidal properties are dominated by variations in water depth. A growing number of studies have identified widespread, sometimes regionally coherent, positive, and negative trends in tidal constituents and levels during the 19th, 20th, and early 21st centuries. Determining the causes is challenging because a tide measured at a coastal gauge integrates the effects of local, regional, and oceanic changes. Here, we highlight six main factors that can cause changes in measured tidal statistics on local scales and a further eight possible regional/global driving mechanisms. Since only a few studies have combined observations and models, or modeled at a temporal/spatial resolution capable of resolving both ultralocal and large-scale global changes, the individual contributions from local and regional mechanisms remain uncertain. Nonetheless, modeling studies project that sea level rise and climate change will continue to alter tides over the next several centuries, with regionally coherent modes of change caused by alterations to coastal morphology and ice sheet extent. Hence, a better understanding of the causes and consequences of tidal variations is needed to help assess the implications for coastal defense, risk assessment, and ecological change
    • 

    corecore