139 research outputs found

    Higher Order Terms of Improved Mean Field Approximation for IIB Matrix Model and Emergence of Four-dimensional Space-time

    Full text link
    The spontaneous breakdown of SO(10) symmetry of the IIB matrix model has been studied by using the improved mean field approximation (IMFA). In this report, the eighth-order contribution to the improved perturbative series is obtained, which involves evaluation of 20410 planar two-particle irreducible vacuum diagrams. We consider SO(d)-preserving configurations as ansatz (d=4,7). The development of plateau, the solution of self-consistency condition, is seen in both ansatz. The large ratio of the space-time extent of d-dimensional part against the remaining (10-d)-dimensional part is obtained for SO(4) ansatz evaluated at the representative points of the plateau. It would be interpreted as the emergence of four-dimensional space-time in the IIB matrix model.Comment: 13 page

    Phenotypic plasticity in the mandibular morphology of Japanese macaques: captive–wild comparison

    Get PDF
    Despite the accumulating evidence suggesting the importance of phenotypic plasticity in diversification and adaptation, little is known about plastic variation in primate skulls. The present study evaluated the plastic variation of the mandible in Japanese macaques by comparing wild and captive specimens. The results showed that captive individuals are square-jawed with relatively longer tooth rows than wild individuals. We also found that this shape change resembles the sexual dimorphism, indicating that the mandibles of captive individuals are to some extent masculinized. By contrast, the mandible morphology was not clearly explained by ecogeographical factors. These findings suggest the possibility that perturbations in the social environment in captivity and resulting changes of androgenic hormones may have influenced the development of mandible shape. As the high plasticity of social properties is well known in wild primates, social environment may cause the inter- and intra-population diversity of skull morphology, even in the wild. The captive–wild morphological difference detected in this study, however, can also be possibly formed by other untested sources of variation (e.g. inter-population genetic variation), and therefore this hypothesis should be validated further

    Spinal Deformity and the Musculoskeletal Cohort Study of the General Older Population

    Get PDF
    Article信州医学雑誌 69(3) : 111-120(2021)departmental bulletin pape

    Dijkgraaf-Vafa theory as large-N reduction

    Full text link
    We construct a large-N twisted reduced model of the four-dimensional super Yang-Mills theory coupled to one adjoint matter. We first consider a non-commutative version of the four-dimensional superspace, and then give the mapping rule between matrices and functions on this space explicitly. The supersymmetry is realized as a part of the internal U()U(\infty) gauge symmetry in this reduced model. Our reduced model can be compared with the Dijkgraaf-Vafa theory that claims the low-energy glueball superpotential of the original gauge theory is governed by a simple one-matrix model. We show that their claim can be regarded as the large-N reduction in the sense that the one-matrix model they proposed can be identified with our reduced model. The map between matrices and functions enables us to make direct identities between the free energies and correlators of the gauge theory and the matrix model. As a by-product, we can give a natural explanation for the unconventional treatment of the one-matrix model in the Dijkgraaf-Vafa theory where eigenvalues lie around the top of the potential.Comment: 34 pages, LaTeX, to appear in Nucl. Phys.

    Object Transportation System Mimicking the Cilia of Paramecium aurelia Making Use of the Light-Controllable Crystal Bending Behavior of a Photochromic Diarylethene

    Get PDF
    The design of an object transportation system exploiting the bending behavior of surface-assembled diarylethene crystals is reported. A photoactuated smart surface based on this system can transport polystyrene beads to a desired area depending on the direction of the incident light. Two main challenges were addressed to accomplish directional motion along a surface: first, the preparation of crystals whose bending behavior depends on the direction of incident light; second, the preparation of a film on which these photochromic crystal plates are aligned. Nuclei generation and nuclear growth engineering were achieved by using a roughness-controlled dotted microstructured substrate. This system demonstrates how to achieve a mechanical function as shown by remote-controlled motion along a surface

    String Scale in Noncommutative Yang-Mills

    Get PDF
    We identify the effective string scale of noncommutative Yang-Mills theory (NCYM) with the noncommutativity scale through its dual supergravity description. We argue that Newton's force law may be obtained with 4 dimensional NCYM with maximal SUSY. It provides a nonperturbative compactification mechanism of IIB matrix model. We can associate NCYM with the von Neumann lattice by the bi-local representation. We argue that it is superstring theory on the von Neumann lattice. We show that our identification of its effective string scale is consistent with exact T-duality (Morita equivalence) of NCYM.Comment: 28 pages, 4 figures, published version in NP

    The noble gas and nitrogen relationship between Ryugu and carbonaceous chondrites

    Get PDF
    Carbonaceous chondrites are considered to have originated from C-type asteroids and represent some of the most primitive material in our solar system. Furthermore, since carbonaceous chondrites can contain significant quantities of volatile elements, they may have played a crucial role in supplying volatiles and organic material to Earth and other inner solar system bodies. However, a major challenge of unravelling the volatile composition of chondritic meteorites is distinguishing between which features were inherited from the parent body, and what may be a secondary feature attributable to terrestrial weathering. In December 2020, the Hayabusa2 mission of the Japan Aerospace Exploration Agency (JAXA) successfully returned surface material from the C-type asteroid (162173) Ryugu to Earth. This material has now been classified as closely resembling CI-type chondrites, which are the most chemically pristine meteorites. The analysis of material from the surface of Ryugu therefore provides a unique opportunity to analyse the volatile composition of material that originated from a CI-type asteroid without the complications arising from terrestrial contamination. Given their highly volatile nature, the noble gas and nitrogen inventories of chondrites are highly sensitive to different alteration processes on the asteroid parent body, and to terrestrial contamination. Here, we investigate the nitrogen and noble gas signature of two pelletized grains collected from the first and second touchdown sites (Okazaki et al., 2022a), to provide an insight into the formation and alteration history of Ryugu. The concentration of trapped noble gas in the Ryugu samples is greater than the average composition of previously measured CI chondrites and are primarily derived from phase Q, although a significant contribution of presolar nanodiamond Xe-HL is noted. The large noble gas concentrations coupled with a significant contribution of presolar nanodiamonds suggests that the Ryugu samples may represent some of the most primitive unprocessed material from the early solar system. In contrast to the noble gases, the abundance of nitrogen and δ15N composition of the two Ryugu pellets are lower than the average CI chondrite value. We attribute the lower nitrogen abundances and δ15N measured in this study to the preferential loss of a 15N-rich phase from our samples during aqueous alteration on the parent planetesimal. The analyses of other grains returned from Ryugu have shown large variations in nitrogen concentrations and δ15N indicating that alteration fluids heterogeneously interacted with material now present on the surface of Ryugu. Finally, the ratio of trapped noble gases to nitrogen is higher than CI chondrites, and is closer to refractory phase Q and nanodiamonds. This indicates that Ryugu experienced aqueous alteration that led to the significant and variable loss of nitrogen, likely from soluble organic matter, without modification of the noble gas budget, which is primarily hosted in insoluble organic matter and presolar diamonds and is therefore more resistant to aqueous alteration.ISSN:0016-7037ISSN:1872-953
    corecore