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Despite the accumulating evidence suggesting the importance

of phenotypic plasticity in diversification and adaptation, little

is known about plastic variation in primate skulls. The present

study evaluated the plastic variation of the mandible in

Japanese macaques by comparing wild and captive

specimens. The results showed that captive individuals are

square-jawed with relatively longer tooth rows than wild

individuals. We also found that this shape change resembles

the sexual dimorphism, indicating that the mandibles of

captive individuals are to some extent masculinized. By

contrast, the mandible morphology was not clearly explained

by ecogeographical factors. These findings suggest the

possibility that perturbations in the social environment in

captivity and resulting changes of androgenic hormones may

have influenced the development of mandible shape. As the

high plasticity of social properties is well known in wild

primates, social environment may cause the inter- and intra-

population diversity of skull morphology, even in the wild.

The captive–wild morphological difference detected in this

study, however, can also be possibly formed by other

untested sources of variation (e.g. inter-population

genetic variation), and therefore this hypothesis should be

validated further.

1. Introduction
Phenotypic plasticity refers to the ability of a single genotype to

produce distinct phenotypes in response to varying environmental

conditions [1]. Cursory consideration would suggest that plasticity
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has no relevance to evolutionary processes other than dampening the effects of selection. However,

theoretical and empirical studies have suggested that plasticity could play a key role in promoting

diversification at numerous levels, often through the mechanism of genetic accommodation or more

specific genetic assimilation [1–6]. In other words, plasticity can promote the emergence of novel

phenotypes, diversification within and among populations and species, and adaptive radiation [1]. In

fact, it has been reported that clades that exhibit more ecologically relevant plasticity are more species-

rich and have broader geographical ranges than closely related clades lacking plasticity [7]. Therefore,

evaluating phenotypic plasticity, not only genetically determined variation, is important to understand

the evolutionary processes of diversification and adaptation.

Comparison between captive and wild individuals provides clues to interpret phenotypic plasticity,

even for taxa in which experiments are difficult or impossible due to ethical and/or physical constraints

(most intermediate- and large-bodied mammals are included in this group). Although the purposes of

such research have varied, many scholars have examined whether there are morphological differences

between captive and wild skeletal specimens in various mammalian taxa [8–24]. Studies on skulls

have often focused on the effects of mechanical loading associated with dietary differences. For

example, food is usually softer in a captive environment than in the wild. Possibly as a result of this

dietary shift, captive individuals tend to exhibit a less developed sagittal crest, less doming of the

dorsal roof of the skull, and greater zygomatic and/or palatal widths than wild ones, in several

Carnivora species (i.e. lions [20], tigers [9], and coyotes [17]). The studies of squirrel monkeys also

showed the dental anomalies and narrower dental arches in the individuals raised on soft rather than

hard diets [23]. These findings imply that the relaxation of mechanical loading in captivity probably

results in anomalies and less development in the regions that are susceptible to masticatory stress.

Social animals, such as some primates, can also be influenced by the skewed social environment

encountered in captivity. Although this perspective has been largely overlooked in the literature,

Singleton [24] pointed out the potential influences of social environment on skull development. By

experimental simulation, she demonstrated that the characteristics of captive male Mandrillus, for

example, robust cranial superstructures, increased facial height and length, and facial retroflexion, can

be mostly explained by extension of the normal male developmental trajectory [24]. The background

to this phenomenon lies in the roles of androgenic hormones, which directly and indirectly influence

the development of skulls, particularly during adolescence [25–28]. The level of testosterone (one of

the androgenic hormones) is associated with social rank or dominance behaviour [29–31], and such

social properties are to some extent changed by captive environments [32–36]. For example, it is

plausible that captive males, who typically lack or have a limited number of male peers [37],

experience unchallenged dominance, and therefore are exposed to prolonged, elevated testosterone

levels. Thus, the masculinized skulls often observed in the captive individuals of social primates are

likely to be at least in part attributable to perturbation of the social environment and resulting

changes in socio-hormone levels.

As one of social primates, there has been a relatively large amount of literature on Japanese macaques,

also known as snow monkeys, regarding their ecology, society, genetics and morphology, and a variety

of laboratory studies since the establishment of the field of primatology in Japan in 1948 [38]. This species

is distributed across a wide climatic range spanning from subtropical to cool temperate, the northern

limit of which is the highest inhabited latitude among the living species of non-human primates [39].

Some scholars have investigated the ecogeographical variations of morphology in Japanese macaques

[40–45]. These works revealed that some traits, such as body size [45], nasal cavity size [41] and

relative and absolute molar sizes [44], exhibit a latitudinal cline or a negative correlation with

temperature; these geographical clines may directly or indirectly reflect adaptation to climatic

gradient. One of the plausible factors indirectly causing this is the regional difference in dietary

composition, which is correlated with climatic conditions; for example, individuals in colder

environments and/or higher latitudes more frequently eat bark, buds, and herbaceous plants in

winter [46–48]. It is possible that the masticatory apparatus has adapted to such regional differences

in dietary conditions. On the other hand, non-metric skull traits appear to reflect genetic variations of

blood protein polymorphisms [49]. Thus, the morphological variations in Japanese macaques have

been relatively well documented and discussed in the context of adaptive or neutral evolution.

However, despite its importance in the evolutionary context as mentioned above, little attention has

been paid to phenotypic plasticity in morphological traits.

In the present study, we investigated phenotypic plasticity in mandibular morphology in Japanese

macaques as potentially influenced by dietary composition and/or androgenic hormone level during

development. In particular, we evaluated how, and to what extent, captivity influences mandibular
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morphology, by comparing captive to wild specimens. We then compared the direction of captivity-

related shape change with the directions of shape change related to other factors, namely, size, sex,

age class and ecogeographical factors as a proxy for dietary conditions. To achieve these, we applied

a Bayesian mixed model approach because Bayesian inference facilitates the intuitive interpretation of

results compared with classical frequentist inference [50] and because a mixed model can take into

account unknown random effects regarding population differences [51].

2. Material and Methods
The sample analysed in this study consists of 177 skeletal specimens of Japanese macaques, housed at the

Hakusan Nature Conservation Centre, Hakusan, and the Primate Research Institute (PRI), Kyoto

University, Inuyama, Japan (table 1). Among these, 93 were captive individuals, while 84 were wild.

Captive individuals had been raised at PRI, for the purpose of research and/or breeding. Of the 93

captive individuals, 39 were founders (coded as zero generation), which had been transferred from 10

different natural provisioned or non-provisioned populations to PRI (figure 1). The other 54 captive

individuals were the first to the fourth generation derived from such founders. The captive

individuals had usually been fed monkey chow (AS: Oriental Yeast Co., Ltd.) and sweet potato. They

had been housed in an outdoor enclosure, a group or isolated cage; they had sometimes been

transferred among these three places for research, clinical care or breeding management. The 84 wild

specimens were derived from 14 populations, ranging from subtropical Yakushima to cold-temperate

Shimokita (figure 1). The wild specimens were derived from cadavers collected in the wild or those

obtained from government management of populations. No animals were sacrificed for the purposes

of the present study. To rule out developmental variations, the sample only consists of the mature

Table 1. Samples used in this study. The number in parentheses indicates young adult specimens.

prefecture population environment latitude longitude female male total

Aomori Shimokita wild 41.51 140.93 4 4 8 (0)

Miyagi Kinkazan wild 38.29 141.57 5 2 7 (0)

Toyama Hakusan wild 36.29 136.64 9 9 18 (0)

Saitama Nagatoro captive 36.11 139.11 1 1 2 (0)

Nagano Kamimatsu wild 35.78 137.69 1 0 1 (0)

Nagano Matsukawa wild 35.6 137.91 0 1 1 (0)

Nagano Takamori wild 35.55 137.88 1 0 1 (0)

Fukui Takahama captive 35.49 135.55 19 13 32 (10)

Fukui WakasaF wild 35.49 135.75 6 6 12 (3)

Aichi Inuyama captive 35.38 136.94 1 0 1 (0)

Shimane WakasaS captive 35.34 134.4 12 9 21 (0)

Shimane Mitoya wild 35.3 132.89 1 0 1 (0)

Shimane Kotsugu wild 35.29 132.9 1 1 2 (1)

Shimane Yoshida wild 35.17 132.85 0 1 1 (0)

Kyoto Arashiyama captive 35.01 135.67 9 4 13 (2)

Shiga Koga wild 34.97 136.17 10 5 15 (1)

Shimane Hasumi wild 34.87 132.62 4 4 8 (2)

Shizuoka Izu captive 34.86 138.94 4 1 5 (1)

Osaka Minoo captive 34.85 135.47 1 1 2 (0)

Kagawa Shodoshima captive 34.51 134.3 1 0 1 (0)

Hiroshima Miyajima captive 34.28 132.31 4 5 9 (0)

Wakayama Noguchi wild 33.9 135.18 0 1 1 (0)

Kagoshima Yakushima captive/wild 30.29 130.44 7 8 15 (5)
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specimens with almost (young adult, N ¼ 25) or fully erupted third molars (adult, N ¼ 152). Age ranges

from 6.4 to 29.5 years (mean+ s.d.: 14.0+5.7) for captive specimens, although it is unknown for wild

specimens. Fully erupted third molars (adults) were observed in individuals with 8.1 years of age or

more. They include both sexes (female, N ¼ 101; male, N ¼ 76). No specimen exhibiting any evidence

of severe alveolar pyorrhoea was included in the samples.

The mandibles were scanned using a computed tomography (CT) scanner (Latheta LCT-200; Hitachi-

Aloka Ltd., Tokyo, Japan) at the Institute for Genetic Medicine, Hokkaido University, with a slice

thickness of 0.24 mm; another CT scanner (Asteion Premium 4; Toshiba Medical Systems Co.,

Otawara, Japan) at PRI, with a slice thickness of 0.5 mm; or a 3D laser scanner (NextEngine Inc.,

Santa Monica, CA, USA) at PRI. Twenty-eight landmarks (table 2 and figure 2) were digitized by a

single observer to avoid inter-observer error and were then double-checked by another, using

Stratovan Checkpoint software (Stratovan Co., Sacramento, CA, USA).

Geometric morphometrics [52,53] was applied to evaluate variations in the shape and size of the

mandibles, using Morpho [54] and geomorph [55] packages, and a custom script written in R

software [56]. In advance of the analyses, one outlier was detected and removed based on the

Smirnov–Grubbs test ( p ¼ 0.05) of the Procrustes distance from a mean shape. The generalized

Procrustes analysis was performed to superimpose landmark configurations. The symmetric shape

components were subjected to principal component analysis to summarize shape variations. Because

shape components are redundant and often highly correlated [57], the number of variables used for

the analyses of shape was reduced by including only the first 10 principal components (PCs). The first

10 PCs accounted for 80.3% of total variance, and their pairwise Euclidean distances were highly

correlated with the matrix of Procrustes distance (r ¼ 0.98), indicating a good summary of shape

variations (electronic supplementary material, figure S1). The natural logarithm of centroid size was

calculated and used as a measure of size in the following analyses (hereinafter referred to as ‘size’).

A Bayesian linear mixed model was applied to evaluate factors influencing mandible shape and size,

using the brms package [58,59] in R. Here, the response variable was shape or size. For shape, a

multivariate response model was applied, wherein PC1–10 were simultaneously used as response

variables. In the test of the effect of captivity, size (if response was shape), sex, age class and captivity

were used as fixed effects (table 3). Sex was coded as 0 (female) or 1 (male); age class as 0 (young

Primate Research Institute, Kyoto University

30

35

la
tit

ud
e 

(°
)

40

45

130 135 140 145

longitude (°)

captive
wild
both

Figure 1. Localities of samples. Red circles denote the localities where the founders of the captive individuals were captured. Green
triangles indicate the localities where wild individuals or their remains were collected. A blue square denotes a locality from which
both captive and wild specimens were derived.
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adult with almost erupted third molars) or 1 (adult with fully erupted third molars); and captivity as 0

(wild), 1 (founder, i.e. zero generation), or 2 (first to fourth generations). The test of the effect of

ecogeographical factors was performed using the subset of the wild-caught specimens; size (if

response was shape), sex, age class and the annual mean temperature and annual precipitation for the

past 30 years (1970–2000) were used as fixed effects. The two ecogeographical variables were obtained

from the WorldClim database, using the raster package [60] in R (electronic supplementary material,

figure S2). Latitude and longitude were not included in the model to avoid redundancy, as they were

highly correlated with the two ecogeographical variables (absolute r ¼ 0.72–0.82). For all of the

models, population was set as a random effect to account for unknown variations regarding

population differences. Before running the models, all variables were scaled to facilitate understanding

of the results. We used an improper flat prior for fixed effects and a weakly informative prior (a half

Student’s t prior with three degrees of freedom) for random effects, following the default settings of

brms. Family, that is the distribution of response variable, was assumed to be Gaussian. The models

were run with four MCMC chains, each of which had 10 000 iterations with 5000 burn-in, yielding a

total posterior sample size of 20 000. We confirmed that Markov chains reached convergence (Rhat , 1.1).

The validity of the models was evaluated based on the widely applicable Bayesian information

criterion (WAIC) [61], wherein the full models were compared with the reduced models that excluded

the focused-on effects, namely, captivity or the two ecogeographical variables (table 3). WAIC is a

1

2 3 4

517
5/17

6/18
618 6

18

7719 7/19

7

19

8

20

921

9/21

10/22

11/23

12/241227

1426
1526

13/25

14/26

16

28

12

24

13

25

14

26

15

27

9

21

Figure 2. Landmarks used in this study. Frontal (left), left-lateral (middle) and occlusal (right) views of mandibles.

Table 2. Landmarks used in this study.

no landmark

1 infradentale

2 mandibular orale

3 superior transverse torus ( posterior)

4 gnathion

5 17 mental foramen (anterior)

6 18 P3 – P4 (lateral)

7 19 M1 – M2 (lateral)

8 20 M3 (lateral-posterior)

9 21 ramus (anterior and in line with alveolus)

10 22 gonion

11 23 ramus ( posterior and in line with alveolus)

12 24 condylion laterale

13 25 sigmoid notch

14 26 coronion

15 27 condylion mediale

16 28 mandibular foramen (superior)
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Bayesian analogue of Akaike’s information criterion [62], which evaluates the goodness of a model

(a smaller value is better). This was performed using the brms package.

The direction of captivity-related shape change was compared with each of those related to other

fixed effects. This was performed by calculating the angles and correlations between the pairs of

vectors of regression coefficients [63,64]. In the case of comparing vectors between different models,

the vector of each iteration for a model was compared with the mean of vectors of another model; the

same was done in the opposite direction, and the two sets of angles or correlations were combined. In

addition, to illustrate the captivity-related shape change, we calculated a shape score for captivity.

Shape score s was calculated as follows: s ¼ ybT(bbT)�0:5, where y is the matrix of shape variables and

b is the regression vector [65]. These calculations were performed using a custom script written in

R [54,55,63,64].

To evaluate the validity of these analyses, we reproduced the Bayesian linear mixed models with

changing variables or using the subset of samples as follows. First, to make doubly sure about the

control of allometric effect, we replaced the response variables with the PCs of size-adjusted shape

data. The size-adjusted shape data was calculated as the residuals from the multiple regression of the

symmetric shape components on size using MorphoJ software [66] (R2 ¼ 0.023, p ¼ 0.048). Second, to

take island effect into account, we added island, which was coded as 0 (non-island) or 1 (island), to

explanatory factor (fixed effect). Third, to consider the possible difference in age distribution between

captive and wild samples, we reproduced the models by using the subset of samples that excludes the

captive specimens with more than 20 years of age (N ¼ 167). This was done because such old-aged

individuals are considered to be rare in the wild [39]. Fourth, the models were reproduced including

only adult (fully erupted third molars) specimens (N ¼ 151).

3. Results
The captive environment did not have a significant effect on size or the majority of shape variations

(figure 3 and electronic supplementary material, figure S3). Size was instead influenced by sex (0.76

[95% CI 0.68–0.84]) and age class (0.21 [0.13–0.30]), indicating that the mandibles of males and adults

were larger than those of females and young adults, respectively. PC1 accounting for 22.0% of total

variance explained the relative width of the mandible and the relative sizes of body and ramus

(figure 4a). As the PC1 score decreased, size became larger (20.67 [20.83 to 20.51]). These findings

Table 3. Summary of models. DWAIC is calculated compared with the best model, which has the smallest WAIC. A blank in the
DWAIC column indicates that it is the best model. All the models have random effect of population.

explanatory variables (fixed effects) Bayes R2 WAIC s.e. DWAIC s.e.

test of captivity for size

sex þ age class þ captivity 0.720 296.4 27.9 2.0 0.5

sex þ age class 0.721 294.4 27.8

test of captivity for shape

size þ sex þ age class þ captivity 0.327 4474.6 75.6

size þ sex þ age class 0.318 4484.3 74.6 9.7 10.2

test of ecogeographical factors for size

sex þ age class þ temperature þ precipitation 0.760 131.9 16.9 1.3 1.0

sex þ age class þ precipitation 0.761 130.6 17.1

sex þ age class þ temperature 0.757 132.0 17.0 1.4 2.0

sex þ age class 0.758 131.4 17.4 0.7 1.7

test of ecogeographical factors for shape

size þ sex þ age class þ temperature þ precipitation 0.322 2204.3 39.3 7.2 8.5

size þ sex þ age class þ precipitation 0.311 2199.0 39.4 1.9 5.6

size þ sex þ age class þ temperature 0.310 2204.4 38.7 7.3 5.1

size þ sex þ age class 0.299 2197.1 39.1
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indicate that, in larger individuals, the mandible is narrower and the mandibular body larger relative to

the ramus. PC2 was explained by the relative height of the ramus but is not associated with any

explanatory variables (figure 4b). PC3 (10.4%) score was significantly positively correlated with size

(0.41 [0.16–0.67]) and negatively correlated with sex (20.36 [20.60 to 20.13]). This may be the

consequence of multicollinearity between size and sex, because the two variables are highly correlated

to each other (r ¼ 0.75) and because, when removing one of the two variables, the effect of the other

became insignificant (electronic supplementary material, figures S4 and S5). The individuals with

larger PC3 scores tend to be square-jawed (laterally positioned gonions) with a more posteriorly

inclined ramus (figure 4c). PC5–10 were not significantly explained by any explanatory factors.

PC4 (9.4%) was significantly influenced by captivity (20.39 [20.55 to 20.23]) as well as by age class

(0.20 [0.06–0.34]), sex (20.50 [20.71 to 20.30]) and size (0.36 [0.14–0.57]) (figures 4d and 5). As PC4

score decreases (i.e. in captive rather than wild animals, in males rather than females, in young adults

rather than adults and in smaller individuals), the tooth row becomes relatively longer, the gonion is

positioned more laterally (being square-jawed), the ramus inclines more posteriorly with respect to the

body, and the anterior part of the body is relatively more robust (figures 4d and 5). When viewing

the shape variation in its entirety, we confirmed that the full model was much better than the reduced

size

PC6 PC7 PC8 PC9 PC10

PC1 PC2 PC3 PC4 PC5

–0.5 0 0.5

–0.5 0 0.5

–0.5 0

coefficient

0.5 –0.5 0 0.5 –0.5 0 0.5

size
sex

age class
captivity

size
sex

age class
captivity

size
sex

age class
captivity

va
ri

ab
le

s

Figure 3. Posterior distributions of regression coefficients in the test of captivity. Points are means and lines represent 95% credible
intervals.

(b)(a)

(c) (d)

Figure 4. Shape changes along with each principal component axis. (a) PC1, (b) PC2, (c) PC3 and (d ) PC4. The 3D models of
negative (23 s.d., left, white) and positive (þ3 s.d., right, grey) extremes are shown.
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model, in which captivity is excluded from among the explanatory variables (table 3). The shape score

was highly negatively correlated with PC4 (r ¼ 20.81, p , 2.2 � 10216), and the shape change with

captivity was almost the same as (but in the opposite direction to) that along PC4 (figure 6); this

indicates that shape changes with captivity are mostly represented by PC4. The small improvement in

Bayes R2, however, indicated that the effect of captivity on mandible shape explained a small

proportion of the total variance (table 3).

Significant effect of captivity was detected even when using the PCs of size-adjusted shape data for

response variables (electronic supplementary material, figure S6), when including island as explanatory

factor (electronic supplementary material, figure S7), when using the subset of samples that excludes the

captive specimens with more than 20 years of age (electronic supplementary material, figure S8), or that

only consists of adult specimens (electronic supplementary material, figure S9). In the captive specimens

with known age and generation, neither age nor generation was significantly correlated with PC4 and

shape score (electronic supplementary material, table S1).

Figure 7 illustrates the vector angles and correlations between the effects of the different variables on

mandible shape. Angles between the same pair of effects were similar, irrespective of whether comparison

was performed between models or within a model, indicating that the difference in models did not

markedly affect the effects of each factor on shape. The 95% credible intervals crossed the line

representing independence (908 for angle and zero for correlation), except for the pair between sex and
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(b)(a) (c)

Figure 5. Relationship between mandible shape and captivity. Red indicates females and blue, males. (a) Boxplot between PC4 and
captivity; (b) fitted values of the marginal effect of captivity on PC4; (c) boxplot between shape score and captivity.

(b)(a)

(c) (d )

Figure 6. Shape change along with shape score. (a) Overview, (b) occlusal, (c) frontal and (d ) lateral views of the 3D model.
Negative (left, white) and positive (right, grey) extremes are shown. Note that the magnitude of shape change is exaggerated
tenfold for clarity.
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size. This indicates that, when viewing shape variation in its entirety, the direction of captivity-related

shape change was not significantly related to any of the other factors.

For ecogeographical factors, temperature, not precipitation, was significantly associated with PC3

(0.38 [0.01–0.73]) (figure 8). This indicates that the individuals inhabiting colder environments tended

to be square-jawed with a more posteriorly inclined ramus (figure 4c). However, when viewing the

whole shape variation, the inclusion of ecogeographical factors considerably worsened the model

(table 3 and electronic supplementary material, figure S10). In the model that considers island effect,

correlation

angle

sex–age sex–size size–age cap–size cap–sex cap–age cap–temp cap–prec

40

60

80

100

120

–0.8

–0.4

0.0

0.4

vector comparison

Figure 7. Vector angles and correlations between effects on shape. Red indicates the comparison between the effects within the
same model. Blue indicates the comparison between the effects in different models. Points are means and lines represent 95%
credible intervals. Solid line denotes independence (908 for angle and zero for correlation).
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Figure 8. Posterior distributions of regression coefficients in the test of ecogeographic factors. Points are means and lines represent
95% credible intervals.
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the model that includes only temperature was slightly better than the reduced one that excludes both

temperature and precipitation (electronic supplementary material, figure S11). Thus, temperature

might possibly have an effect but it is tentative.

4. Discussion
Size of the mandible was found not to differ between captive and wild Japanese macaques. This is

consistent with some previous studies of various mammalian taxa that reported no differences in

skull or body size between the two groups [17,67], although some studies reported decreased [8,15] or

increased [15,68] overall skull size in captive individuals. This background suggests that the response

of body size to captivity may be taxon-specific, and that the nutritional conditions in the captive

environment could affect body size. The finding of the present study suggests that, in Japanese

macaques, nutritional conditions in captivity were unlikely to have been markedly different from

natural conditions. Size is instead best explained by age class and sex; that is, males and adults tend

to be larger than females and young adults, respectively. Somewhat unexpectedly, size was found to

be independent of both temperature and precipitation in wild populations. In primates, body or skull

size is often positively correlated with precipitation in tropical regions (possibly reflecting the

responses to the primary productivity of plants, and hence food availability) [69–72] or negatively

with temperature in temperate regions (as predicted by Bergmann’s rule) [73]. By contrast, the

geographical variation of mandible size in Japanese macaques appears to reflect unknown factors,

such as population history, which was incorporated into random effects, rather than local adaptation.

Major variations in shape also did not differ between captive and wild individuals. PC1 explains

allometric shape variations, indicating that larger individuals tend to show narrower and more

elongated mandibles. This seems to follow the common allometric trend of mammals, reflecting the

truncation or extension of ontogenetic trajectory; larger animals tend to have longer faces/muzzles

[74]. PC2 representing the relative ramus height cannot be explained by any apparent factor.

Significant effects of size and sex on PC3 were detected, but this may be the consequence of

multicollinearity. PC5 and subsequent PCs seem to be almost independent of the factors that we tested.

The present study also suggested that no shape variation is primarily explained by either temperature

or precipitation, although temperature might possibly have an effect. Japanese macaques as a species

have specialized mandibular morphology, which is considered to be advantageous for eating tough

food such as bark and mature leaves, compared with other species of the same genus [75]; however,

the intraspecific variation in mandible shape might not to be the consequence of dietary adaptation to

local environments, despite the wide distribution range from subtropical to cool-temperate regions

and related wide dietary variations. Although indication of dietary adaptation was detected in an

analysis of the dental morphology in local populations of Japanese macaques [44], mandible shape, as

with size, may be likely to reflect population history or other unknown factors rather than current

climatic (temperature and precipitation) conditions.

A part of the shape variation differs between captive and wild individuals, which is mostly

represented by PC4. Captive individuals tend to be square-jawed with relatively longer tooth row

than wild ones. Because it is unlikely that the size of each tooth changes, this shape change likely

reflects the change in the proportion of body and ramus and/or in the interval between teeth. This

shape change resembles sex differences, which indicates that captive individuals exhibit a mandible

shape that to some extent exaggerates male-like features, namely, being masculinized. These findings

are consistent with the hypothesis that the change in mandible shape in captive individuals is

attributable to perturbations in the social environment and resulting changes of androgenic hormones

[24]. It should be, however, kept in mind that captivity explains a small proportion of total shape

variance, and that the direction of captivity-related shape change is not identical to that of sex-related

shape change, when viewing whole shape variations. In addition, the possibility of changes in

mechanical loading having had an effect cannot be ruled out because we did not directly test the

dietary shift but just evaluated the effects of ecogeographical variations as a proxy for dietary

differences. Therefore, in Japanese macaques, the social environment in captivity possibly influences

the development of mandible shape via changes in sex hormones, although this is not the only factor

causing captivity-induced shape change, and its effect is small.

The captive–wild difference should be interpreted with care, because there are several other possible

sources of variations, which were considered here. First, although this has been often overlooked in

captive–wild comparisons, it is possible that differences in age distribution between captive and wild
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samples influence morphology. The present study, however, detected significant captive–wild difference

even when removing the old-aged captive specimens or when restricting the sample to adults (i.e.

specimens with fully erupted third molars). We also did not detect significant shape change (in PC4

and shape score) with ageing after the full eruption of third molars. It was reported by van Minh

et al. [76] that after maturation (seven years of age) the ramus inclines posteriorly and the overall

dimensions of mandible increase with age in Japanese macaques, but such features are not observed

in captive specimens when compared with wild ones. Therefore, at least in our sample, the age

distribution difference is unlikely to explain any difference between captives and wilds. Second, it

should be noted with care that genetic relationships between the study individuals might be a source

for morphological variation, which we did not account for here. Although the present study partly

controlled inter-population variations by incorporating population as a random effect in the mixed

model or by evaluating the island–non-island difference, this cannot completely rule out the effect of

genetic inheritance. Unfortunately, little is known about the nuclear genetic variation in wild

populations of Japanese macaques so far, and further studies are needed to elucidate this issue.

In conclusion, this study suggested the possibility that captivity caused a masculinized feature in

mandible shape possibly because of the perturbations in the social environments and resulting changes

of androgen hormones, although this hypothesis should be validated further. If this is the case, social

plasticity may have played a small but significant role in shaping the intra- and inter-population

diversification of skull morphology in primates.
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