47 research outputs found

    Darcian permeability constant as indicator for shear stresses in regular scaffold systems for tissue engineering

    Get PDF
    The shear stresses in printed scaffold systems for tissue engineering depend on the flow properties and void volume in the scaffold. In this work, computational fluid dynamics (CFD) is used to simulate flow fields within porous scaffolds used for cell growth. From these models the shear stresses acting on the scaffold fibres are calculated. The results led to the conclusion that the Darcian (k 1) permeability constant is a good predictor for the shear stresses in scaffold systems for tissue engineering. This permeability constant is easy to calculate from the distance between and thickness of the fibres used in a 3D printed scaffold. As a consequence computational effort and specialists for CFD can be circumvented by using this permeability constant to predict the shear stresses. If the permeability constant is below a critical value, cell growth within the specific scaffold design may cause a significant increase in shear stress. Such a design should therefore be avoided when the shear stress experienced by the cells should remain in the same order of magnitud

    A Platform of Porous Biomaterials as 3D Culture Systems for Cancer Biology

    Get PDF
    Background: The role of stem cells in tissue development and repair is beginning to be unravelled and will open remarkable opportunities to improve current medical treatments. Yet, the cascade of events that enable us to distinguish between abnormal and functional tissue morphogenesis is not well known and the potential involvement of stem cells in cancer initiation or tissue regeneration is still at an embryonic stage. Most biological studies rely on culturing cells onto two-dimensional (2D) substrates, which poorly reflect the three-dimensional (3D) environment that governs the physical, chemical, and biological processes at the heart of tissue development. Here, we introduce a library of 3D culture systems − scaffolds − with enhanced cell-material interactions. Materials and Methods: 3D scaffolds made of biodegradable synthetic polymers were fabricated by either rapid prototyping, eletrospinning and their combination. Mesenchymal stem cells derived from bone marrow were isolated from patients after informed consent, seeded on the scaffolds and cultured for up to 35 days. Cell morphology was observed by scanning electron microscopy. Cell number and metabolic activity were quantified by DNA and alamar blue assays. Differentiation was assessed by gene expression, while extrfacellular matrix (ECM) formation by biochemical assays. Results: 3D scaffolds with tailored mechanical and physichochemical properties could be fabricated by different processing technologies. While rapid prototyping resulted in the fabrication of scaffolds with controlled porosity at the macro scale, electrospinning enabled the creation of fibrillar meshes mimicking the physical micro and nano scale dimensions of native ECM. Nutrient availability had a profound effect on tissue formation in 2D and 3D. Despite steep nutrient concentration gradients in 3D scaffolds, stem cells proliferated while avoiding significant death. Cell migration into millimeter-size circular patterns in the scaffold’s pores was supported by ECM organization. Higher concentrations of nutrients controlled the rates of proliferation and did not induce differentiation markers. Furthermore, scaffolds with customized physicochemical and surface properties influenced stem cell morphology and activity. Conclusions: These 3D scaffolds offer a new platform to study the mechanisms behind stem cell driven tissue morphogenesis and may play a role in cancer biology research to create organotypic 3D models to study cancer initiation and development, as well as the potential involvement of stem cells in these processes

    An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum

    Get PDF
    The directed differentiation of patient-derived induced pluripotent stem cells into cell-type specific neurons has inspired the development of therapeutic discovery for neurodegenerative diseases. Many forms of ataxia result from degeneration of cerebellar Purkinje cells, but thus far it has not been possible to efficiently generate Purkinje neuron (PN) progenitors from human or mouse pluripotent stem cells, let alone to develop a methodology for in vivo transplantation in the adult cerebellum. Here, we present a protocol to obtain an expandable population of cerebellar neuron progenitors from mouse embryonic stem cells. Our protocol is characterized by applying factors that promote proliferation of cerebellar progenitors. Cerebellar progenitors isolated in culture from cell aggregates contained a stable subpopulation of PN progenitors that could be expanded for up to 6 passages. When transplanted into the adult cerebellum of either wild-type mice or a strain lacking Purkinje cells (L7cre-ERCC1 knockout), GFP-labeled progenitors differentiated in vivo to establish a population of calbindin-positive cells in the molecular layer with dendritic trees typical of mature PNs. We conclude that this protocol may be useful for the generation and maturation of PNs, highlighting the potential for development of a regenerative medicine approach to the treatment of cerebellar neurodegenerative diseases

    Consenso colombiano de atención, diagnóstico y manejo de la infección por SARS-COV-2/COVID-19 en establecimientos de atención de la salud Recomendaciones basadas en consenso de expertos e informadas en la evidencia

    Get PDF
    The “Asociación Colombiana de Infectología” (ACIN) and the “Instituto de Evaluación de Nuevas Tecnologías de la Salud” (IETS) created a task force to develop recommendations for Covid 19 health care diagnosis, management and treatment informed, and based, on evidence. Theses reccomendations are addressed to the health personnel on the Colombian context of health services. © 2020 Asociacion Colombiana de Infectologia. All rights reserved

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Get PDF
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo

    No full text
    Cells and tissues are intrinsically adapted to molecular gradients and use them to maintain or change their activity. The effect of such gradients is particularly important for cell populations that have an intrinsic capacity to differentiate into multiple cell lineages, such as bone marrow derived mesenchymal stromal cells (MSCs). Our results showed that nutrient gradients prompt the spatiotemporal organization of MSCs in 3D culture. Cells adapted to their 3D environment without significant cell death or cell differentiation. Kinetics data and whole-genome gene expression analysis suggest that a low proliferation activity phenotype predominates in stromal cells cultured in 3D, likely due to increasing nutrient limitation. These differences implied that despite similar surface areas available for cell attachment, higher cell concentrations in 3D reduced MSCs proliferation, while activating hypoxia related-pathways. To further understand the in vivo effects of both proliferation and cell concentrations, we increased cell concentrations in small (1.8 ml) implantable wells. We found that MSCs accumulation and conditioning by nutrient competition in small volumes leads to an ideal threshold of cell-concentration for the induction of blood vessel formation, possibly signaled by the hypoxia-related stanniocalcin-1 gene

    The physics of tissue formation with mesenchymal stem cells

    Get PDF
    Cells react to various forms of physical phenomena that promote and maintain the formation of tissues. The best example of this are cells of musculoskeletal origin, such as mesenchymal stem cells (MSCs), which consistently proliferate or differentiate under cues from hydrostatic pressure, diffusive mass transport, shear stress, surface chemistry, mechanotransduction, and molecular kinetics. To date, no other cell type shows greater receptiveness to macroscopic and microscopic cues, highlighting the acute sensitivity of MSCs and the importance of physical principles in tissue homeostasis. In this review, we describe the literature that has shown how physical phenomena govern MSCs biology and provide insight into the mechanisms and strategies that can spur new biotechnological applications with tissue biology
    corecore