237 research outputs found

    First Step Towards a DevilÏs Staircase in Spin-Crossover Materials

    Full text link
    [EN] The unprecedented bimetallic 2D coordination polymer {Fe[(Hg(SCN)3)2](4,4’-bipy)2}n exhibits a thermal high-spin (HS)$low-spin (LS) staircase-like conversion characterized by a multi-step dependence of the HS molar fraction gHS. Between the fully HS (gHS = 1) and LS (gHS = 0) phases, two steps associated with different ordering appear in terms of spin-state concentration waves (SSCW). On the gHS 0.5 step, a periodic SSCW forms with a HS-LS-HS-LS sequence. On the gHS 0.34 step, the 4D superspace crystallography structural refinement reveals an aperiodic SSCW, with a HS-LS sequence incommensurate with the molecular lattice. The formation of these different long-range spatially ordered structures of LS and HS states during the multi-step spin-crossover is discussed within the framework of “DevilÏs staircase”-type transitions. Spatially modulated phases are known in various types of materials but are uniquely related to molecular HS/LS bistability in this case.This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO), FEDER (CTQ2013-46275-P), Unidad de Excelencia Maria de Maeztu MDM-2015-0538, the Generalitat Valenciana through PROMETEO/2012/049. L.P.L. and F.J.V.M. thank the Universidad de Valencia and a MINECO for a predoctoral (FPI) grant. D.Z. thanks the Natural Science Foundation of China and China Scholarship Council. This work was supported by the Institut Universitaire de France, the National Research Agency (ANR-13-BS04-0002), Rennes Metropole and CNRS (Post-Doc funding of E.T.). E.C. and J.A.R. would like to thank G. Chastanet for meditations on the Devil's staircase.Trzop, E.; Zhang, D.; Piñeiro López, L.; Valverde Muñoz, FJ.; Muñoz Roca, MDC.; Palatinus, L.; Guerin, L.... (2016). First Step Towards a DevilÏs Staircase in Spin-Crossover Materials. Angewandte Chemie International Edition. 55:8675-8679. https://doi.org/10.1002/anie.201602441S867586795

    Recent advances in psychological therapies for eating disorders

    Get PDF
    Recent years have seen substantial consolidation and development of the evidence base for psychological therapies for eating disorders. This review summarises the key changes over that time period. Specific forms of cognitive behavioural therapy and family-based treatment have consolidated and extended their positions as treatments of choice despite the development of novel approaches. However, there is still a significant need for further development and testing to improve recovery rates, particularly in anorexia nervosa

    Experienced Carers Helping Others (ECHO): protocol for a pilot randomised controlled trial to examine a psycho-educational intervention for adolescents with anorexia nervosa and their carers

    Get PDF
    Experienced Carers Helping Others (ECHO) is an intervention for carers of people with eating disorders. This paper describes the theoretical background and protocol of a pilot multicentre randomised controlled trial that will explore the use of two variants of ECHO for improving outcomes for adolescents with anorexia nervosa (AN) referred for outpatient care. Adolescent patients and their carers (typically parents and close others in a supportive role) will be recruited from 38 eating disorder outpatient services across the UK. Carers will be randomly allocated to receive ‘ECHOc’ guided self-help (in addition to treatment as usual), ‘ECHO’ self-help only (in addition to treatment as usual) or treatment as usual only. Primary outcomes are a summary measure of the Short Evaluation of Eating Disorders at 6- and 12-month follow-ups. Secondary outcomes are general psychiatric morbidity of AN patients and carer, carers' coping and behaviour, and change in healthcare use and costs at 6- and 12-month follow-ups. Therapist effects will be examined, and process evaluation of ECHOc will be completed. The findings from this pilot trial will be used in preparation for executing a definitive trial to determine the impact of the preferred variant of ECHO to improve treatment outcomes for AN

    Identification of a Negative Allosteric Site on Human α4β2 and α3β4 Neuronal Nicotinic Acetylcholine Receptors

    Get PDF
    Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs). These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4β2 and α3β4 nicotinic acetylcholine receptor (nAChR) extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the β2 subunit were independently mutated to the corresponding residues found on the β4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4β2 over α3β4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 µM. These results demonstrate the selectivity of KAB-18 for human α4β2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological diseases and disorders

    Systematic Planning of Genome-Scale Experiments in Poorly Studied Species

    Get PDF
    Genome-scale datasets have been used extensively in model organisms to screen for specific candidates or to predict functions for uncharacterized genes. However, despite the availability of extensive knowledge in model organisms, the planning of genome-scale experiments in poorly studied species is still based on the intuition of experts or heuristic trials. We propose that computational and systematic approaches can be applied to drive the experiment planning process in poorly studied species based on available data and knowledge in closely related model organisms. In this paper, we suggest a computational strategy for recommending genome-scale experiments based on their capability to interrogate diverse biological processes to enable protein function assignment. To this end, we use the data-rich functional genomics compendium of the model organism to quantify the accuracy of each dataset in predicting each specific biological process and the overlap in such coverage between different datasets. Our approach uses an optimized combination of these quantifications to recommend an ordered list of experiments for accurately annotating most proteins in the poorly studied related organisms to most biological processes, as well as a set of experiments that target each specific biological process. The effectiveness of this experiment- planning system is demonstrated for two related yeast species: the model organism Saccharomyces cerevisiae and the comparatively poorly studied Saccharomyces bayanus. Our system recommended a set of S. bayanus experiments based on an S. cerevisiae microarray data compendium. In silico evaluations estimate that less than 10% of the experiments could achieve similar functional coverage to the whole microarray compendium. This estimation was confirmed by performing the recommended experiments in S. bayanus, therefore significantly reducing the labor devoted to characterize the poorly studied genome. This experiment-planning framework could readily be adapted to the design of other types of large-scale experiments as well as other groups of organisms

    Gene expression profiling of primary cultures of ovarian epithelial cells identifies novel molecular classifiers of ovarian cancer

    Get PDF
    In order to elucidate the biological variance between normal ovarian surface epithelial (NOSE) and epithelial ovarian cancer (EOC) cells, and to build a molecular classifier to discover new markers distinguishing these cells, we analysed gene expression patterns of 65 primary cultures of these tissues by oligonucleotide microarray. Unsupervised clustering highlights three subgroups of tumours: low malignant potential tumours, invasive solid tumours and tumour cells derived from ascites. We selected 18 genes with expression profiles that enable the distinction of NOSE from these three groups of EOC with 92% accuracy. Validation using an independent published data set derived from tissues or primary cultures confirmed a high accuracy (87–96%). The distinctive expression pattern of a subset of genes was validated by quantitative reverse transcription–PCR. An ovarian-specific tissue array representing tissues from NOSE and EOC samples of various subtypes and grades was used to further assess the protein expression patterns of two differentially expressed genes (Msln and BMP-2) by immunohistochemistry. This study highlights the relevance of using primary cultures of epithelial ovarian cells as a model system for gene profiling studies and demonstrates that the statistical analysis of gene expression profiling is a useful approach for selecting novel molecular tumour markers

    The Malaria Secretome: From Algorithms to Essential Function in Blood Stage Infection

    Get PDF
    The malaria agent Plasmodium falciparum is predicted to export a “secretome” of several hundred proteins to remodel the host erythrocyte. Prediction of protein export is based on the presence of an ER-type signal sequence and a downstream Host-Targeting (HT) motif (which is similar to, but distinct from, the closely related Plasmodium Export Element [PEXEL]). Previous attempts to determine the entire secretome, using either the HT-motif or the PEXEL, have yielded large sets of proteins, which have not been comprehensively tested. We present here an expanded secretome that is optimized for both P. falciparum signal sequences and the HT-motif. From the most conservative of these three secretome predictions, we identify 11 proteins that are preserved across human- and rodent-infecting Plasmodium species. The conservation of these proteins likely indicates that they perform important functions in the interaction with and remodeling of the host erythrocyte important for all Plasmodium parasites. Using the piggyBac transposition system, we validate their export and find a positive prediction rate of ∼70%. Even for proteins identified by all secretomes, the positive prediction rate is not likely to exceed ∼75%. Attempted deletions of the genes encoding the conserved exported proteins were not successful, but additional functional analyses revealed the first conserved secretome function. This gave new insight into mechanisms for the assembly of the parasite-induced tubovesicular network needed for import of nutrients into the infected erythrocyte. Thus, genomic screens combined with functional assays provide unexpected and fundamental insights into host remodeling by this major human pathogen

    The PtdIns 3-Kinase/Akt Pathway Regulates Macrophage-Mediated ADCC against B Cell Lymphoma

    Get PDF
    Macrophages are important effectors in the clearance of antibody-coated tumor cells. However, the signaling pathways that regulate macrophage-induced ADCC are poorly defined. To understand the regulation of macrophage-mediated ADCC, we used human B cell lymphoma coated with Rituximab as the tumor target and murine macrophages primed with IFNγ as the effectors. Our data demonstrate that the PtdIns 3-kinase/Akt pathway is activated during macrophage-induced ADCC and that the inhibition of PtdIns 3-kinase results in the inhibition of macrophage-mediated cytotoxicity. Interestingly, downstream of PtdIns 3-kinase, expression of constitutively active Akt (Myr-Akt) in macrophages significantly enhanced their ability to mediate ADCC. Further analysis revealed that in this model, macrophage-mediated ADCC is dependent upon the release of nitric oxide (NO). However, the PtdIns 3-kinase/Akt pathway does not appear to regulate NO production. An examination of the role of the PtdIns 3-kinase/Akt pathway in regulating conjugate formation indicated that macrophages treated with an inhibitor of PtdIns 3-kinase fail to polarize the cytoskeleton at the synapse and show a significant reduction in the number of conjugates formed with tumor targets. Further, inhibition of PtdIns 3-kinase also reduced macrophage spreading on Rituximab-coated surfaces. On the other hand, Myr-Akt expressing macrophages displayed a significantly greater ability to form conjugates with tumor cells. Taken together, these findings illustrate that the PtdIns 3-kinase/Akt pathway plays a critical role in macrophage ADCC through its influence on conjugate formation between macrophages and antibody-coated tumor cells
    corecore