29 research outputs found

    Genetic diversity of Streptococcus pneumoniae causing meningitis and sepsis in Singapore during the first year of PCV7 implementation.

    Get PDF
    Streptococcus pneumoniae is a major cause of sepsis, meningitis and respiratory disease worldwide. Pneumococcal conjugate vaccines (PCVs) have now been implemented in many countries worldwide, including Singapore. To evaluate the effectiveness of these vaccines, pneumococcal surveillance studies are required. Detailed and unified pneumococcal epidemiology data are currently scarce in South East Asia. Thus, we present data on invasive pneumococcal (IPD) isolates from Singapore that could assist in evaluating the effectiveness of pneumococcal vaccine in Singapore. One hundred and fifty-nine invasive pneumococcal disease isolates were received by the National Public Health Laboratory in Singapore between June 2009 and August 2010. Isolates were characterized using serotyping and multilocus sequence typing. Twenty-four different serotypes were found, the most common of which were 19A, 3, 7F, 23F, 6B, 14, 8 and 19F (in rank order). One hundred and two sequence types were observed, of which 38 were novel due to new alleles or new combinations of already existing alleles. Based on the Simpson's Index of Diversity, serotypes 3, 6B and 19A were the most genetically diverse. Novel sequence types were more prevalent among conjugate vaccine serotypes 3, 19F and 23F and non-conjugate vaccine serotype 8, serogroup 15 and in non-typable isolates. We have demonstrated considerable genetic diversity among invasive pneumococci before and during the widespread use of conjugate vaccines in Singapore. Approximately half of all novel IPD clones identified in this study were non-conjugate vaccine serotypes. Although PCVs would target the most common serotypes, the high genetic diversity in non-vaccine serotypes would require further surveillance studies

    Clogging the machinery: the BBC's experiment in science coordination, 1949–1953

    Get PDF
    In 1949, physicist Mark Oliphant criticised the BBC’s handling of science in a letter to the Director General William Haley. It initiated a chain of events which led to the experimental appointment of a science adviser, Henry Dale, to improve the ‘coordination’ of science broadcasts. The experiment failed, but the episode revealed conflicting views of the BBC’s responsibility towards science held by scientists and BBC staff. For the scientists, science had a special status, both as knowledge and as an activity, which in their view obligated the BBC to make special arrangements for it. BBC staff, however, had their own professional procedures which they were unwilling to abandon. The events unfolded within a few years of the end of the Second World War, when social attitudes to science had been coloured by the recent conflict, and when the BBC itself was under scrutiny from the William Beveridge’s Committee. The BBC was also embarking on new initiatives, notably the revival of adult education. These contextual factors bear on the story, which is about the relationship between a public service broadcaster and the external constituencies it relies on, but must appear to remain independent from. The article therefore extends earlier studies showing how external bodies have attempted to manipulate the inner workings of the BBC to their own advantage (e.g. those by Doctor and Karpf) by looking at the little-researched area of science broadcasting. The article is largely based on unpublished archive documents

    Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.

    Get PDF
    Importance: To date, there is no diagnostic test for Kawasaki disease (KD). Diagnosis is based on clinical features shared with other febrile conditions, frequently resulting in delayed or missed treatment and an increased risk of coronary artery aneurysms. Objective: To identify a whole-blood gene expression signature that distinguishes children with KD in the first week of illness from other febrile conditions. Design, Setting, and Participants: The case-control study comprised a discovery group that included a training and test set and a validation group of children with KD or comparator febrile illness. The setting was pediatric centers in the United Kingdom, Spain, the Netherlands, and the United States. The training and test discovery group comprised 404 children with infectious and inflammatory conditions (78 KD, 84 other inflammatory diseases, and 242 bacterial or viral infections) and 55 healthy controls. The independent validation group comprised 102 patients with KD, including 72 in the first 7 days of illness, and 130 febrile controls. The study dates were March 1, 2009, to November 14, 2013, and data analysis took place from January 1, 2015, to December 31, 2017. Main Outcomes and Measures: Whole-blood gene expression was evaluated using microarrays, and minimal transcript sets distinguishing KD were identified using a novel variable selection method (parallel regularized regression model search). The ability of transcript signatures (implemented as disease risk scores) to discriminate KD cases from controls was assessed by area under the curve (AUC), sensitivity, and specificity at the optimal cut point according to the Youden index. Results: Among 404 patients in the discovery set, there were 78 with KD (median age, 27 months; 55.1% male) and 326 febrile controls (median age, 37 months; 56.4% male). Among 202 patients in the validation set, there were 72 with KD (median age, 34 months; 62.5% male) and 130 febrile controls (median age, 17 months; 56.9% male). A 13-transcript signature identified in the discovery training set distinguished KD from other infectious and inflammatory conditions in the discovery test set, with AUC of 96.2% (95% CI, 92.5%-99.9%), sensitivity of 81.7% (95% CI, 60.0%-94.8%), and specificity of 92.1% (95% CI, 84.0%-97.0%). In the validation set, the signature distinguished KD from febrile controls, with AUC of 94.6% (95% CI, 91.3%-98.0%), sensitivity of 85.9% (95% CI, 76.8%-92.6%), and specificity of 89.1% (95% CI, 83.0%-93.7%). The signature was applied to clinically defined categories of definite, highly probable, and possible KD, resulting in AUCs of 98.1% (95% CI, 94.5%-100%), 96.3% (95% CI, 93.3%-99.4%), and 70.0% (95% CI, 53.4%-86.6%), respectively, mirroring certainty of clinical diagnosis. Conclusions and Relevance: In this study, a 13-transcript blood gene expression signature distinguished KD from other febrile conditions. Diagnostic accuracy increased with certainty of clinical diagnosis. A test incorporating the 13-transcript disease risk score may enable earlier diagnosis and treatment of KD and reduce inappropriate treatment in those with other diagnoses

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Whole-Genome Expression Profiling Reveals That Inhibition of Host Innate Immune Response Pathways by Ebola Virus Can Be Reversed by a Single Amino Acid Change in the VP35 Protein▿ †

    No full text
    Ebola hemorrhagic fever is a rapidly progressing acute febrile illness characterized by high virus replication, severe immunosuppression, and case fatalities of ca. 80%. Inhibition of phosphorylation of interferon regulatory factor 3 (IRF-3) by the Ebola VP35 protein may block the host innate immune response and play an important role in the severity of disease. We used two precisely defined reverse genetics-generated Ebola viruses to investigate global host cell responses resulting from the inhibition of IRF-3 phosphorylation. The two viruses encoded either wild-type (WT) VP35 protein (recEbo-VP35/WT) or VP35 with an arginine (R)-to-alanine (A) amino acid substitution at position 312 (recEbo-VP35/R312A) within a previously defined IRF-3 inhibitory domain. When sucrose-gradient purified virus was used for infection, host cell whole-genome expression profiling revealed striking differences in human liver cell responses to these viruses differing by a single amino acid. The inhibition of host innate immune responses by WT Ebola virus was so potent that little difference in interferon and antiviral gene expression could be discerned between cells infected with purified WT, inactivated virus, or mock-infected cells. However, infection with recEbo-VP35/R312A virus resulted in a strong innate immune response including increased expression of MDA-5, RIG-I, RANTES, MCP-1, ISG-15, ISG-54, ISG-56, ISG-60, STAT1, IRF-9, OAS, and Mx1. The clear gene expression differences were obscured if unpurified virus stocks were used to initiate infection, presumably due to soluble factors present in virus-infected cell supernatant preparations. Ebola virus VP35 protein clearly plays a pivotal role in the potent inhibition of the host innate immune responses, and the present study indicates that VP35 has a wider effect on host cell responses than previously shown. The ability to eliminate this inhibitory effect with a single amino acid change in VP35 demonstrates the critical role this protein must play in the severe aspects this highly fatal disease

    Dataset: Genome wide association study in antimicrobial resistance of disease-causing Streptococcus pneumoniae in Singapore

    No full text
    Dataset to support University of Southampton Doctoral Thesis &quot;Genome wide association study in antimicrobial resistance of disease-causing Streptococcus pneumoniae in Singapore&quot;. The dataset includes excel files containing all epidemiology data relating to bacterial isolates collected for this study and text files containing genome wide association data for antimicrobials tested in GWAS for this study. Additional data is available on request: please use link to request data.http://library.soton.ac.uk/datarequest </span
    corecore