24 research outputs found

    Consensus guidelines for the definition of time-to-event end points in image-guided tumor ablation: results of the SIO and DATECAN initiative

    Get PDF
    International audienceThere is currently no consensus regarding preferred clinical outcome measures following image-guided tumor ablation or clear definitions of oncologic end points. This consensus document proposes standardized definitions for a broad range of oncologic outcome measures with recommendations on how to uniformly document, analyze, and report outcomes. The initiative was coordinated by the Society of Interventional Oncology in collaboration with the Definition for the Assessment of Time-to-Event End Points in Cancer Trials, or DATECAN, group. According to predefined criteria, based on experience with clinical trials, an international panel of 62 experts convened. Recommendations were developed using the validated three-step modified Delphi consensus method. Consensus was reached on when to assess outcomes per patient, per session, or per tumor; on starting and ending time and survival time definitions; and on time-to-event end points. Although no consensus was reached on the preferred classification system to report complications, quality of life, and health economics issues, the panel did agree on using the most recent version of a validated patient-reported outcome questionnaire. This article provides a framework of key opinion leader recommendations with the intent to facilitate a clear interpretation of results and standardize worldwide communication. Widespread adoption will improve reproducibility, allow for accurate comparisons, and avoid misinterpretations in the field of interventional oncology research. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Liddell in this issue

    Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses

    Get PDF
    Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associated with subjective well-being, 2 variants associated with depressive symptoms, and 11 variants associated with neuroticism, including 2 inversion polymorphisms. The two loci associated with depressive symptoms replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal or pancreas tissues are strongly enriched for association.</p

    A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.

    Get PDF
    Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19

    Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.

    Get PDF
    We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities

    Prognostic Research in Traumatic Brain Injury

    Get PDF
    Prognostic assessment in traumatic brain injury (TBI) is embedded deeply in clinical care. Considering the limitations of current prognostic indicators, there is increasing interest in understanding the role of new biomarkers, and in finding other prognostic indicators of long-term outcomes following TBI. New prognostic indicators may result in the development of more accurate prediction models that could be useful for both risk stratification and clinical decision making. We aimed to review methodological issues and provide tentative guidelines for prognostic research in TBI. Prognostic factor research focuses on the role of a specific patient or disease-related characteristic in relation to outcome. Typically, univariable relations of the prog

    A hypolipoprotein sepsis phenotype indicates reduced lipoprotein antioxidant capacity, increased endothelial dysfunction and organ failure, and worse clinical outcomes

    No full text
    ObjectiveApproximately one-third of sepsis patients experience poor outcomes including chronic critical illness (CCI, intensive care unit (ICU) stay &gt; 14&nbsp;days) or early death (in-hospital death within 14&nbsp;days). We sought to characterize lipoprotein predictive ability for poor outcomes and contribution to sepsis heterogeneity.DesignProspective cohort study with independent replication cohort.SettingEmergency department and surgical ICU at two hospitals.PatientsSepsis patients presenting within 24&nbsp;h.MethodsMeasures included cholesterol levels (total cholesterol, high density lipoprotein cholesterol [HDL-C], low density lipoprotein cholesterol [LDL-C]), triglycerides, paraoxonase-1 (PON-1), and apolipoprotein A-I (Apo A-I) in the first 24&nbsp;h. Inflammatory and endothelial markers, and sequential organ failure assessment (SOFA) scores were also measured. LASSO selection assessed predictive ability for outcomes. Unsupervised clustering was used to investigate the contribution of lipid variation to sepsis heterogeneity.Measurements and main results172 patients were enrolled. Most (~ 67%, 114/172) rapidly recovered, while ~ 23% (41/172) developed CCI, and ~ 10% (17/172) had early death. ApoA-I, LDL-C, mechanical ventilation, vasopressor use, and Charlson Comorbidity Score were significant predictors of CCI/early death in LASSO models. Unsupervised clustering yielded two discernible phenotypes. The Hypolipoprotein phenotype was characterized by lower lipoprotein levels, increased endothelial dysfunction (ICAM-1), higher SOFA scores, and worse clinical outcomes (45% rapid recovery, 40% CCI, 16% early death; 28-day mortality, 21%). The Normolipoprotein cluster patients had higher cholesterol levels, less endothelial dysfunction, lower SOFA scores and better outcomes (79% rapid recovery, 15% CCI, 6% early death; 28-day mortality, 15%). Phenotypes were validated in an independent replication cohort (N = 86) with greater sepsis severity, which similarly demonstrated lower HDL-C, ApoA-I, and higher ICAM-1 in the Hypolipoprotein cluster and worse outcomes (46% rapid recovery, 23% CCI, 31% early death; 28-day mortality, 42%). Normolipoprotein patients in the replication cohort had better outcomes (55% rapid recovery, 32% CCI, 13% early death; 28-day mortality, 28%) Top features for cluster discrimination were HDL-C, ApoA-I, total SOFA score, total cholesterol level, and ICAM-1.ConclusionsLipoproteins predicted poor sepsis outcomes. A Hypolipoprotein sepsis phenotype was identified and characterized by lower lipoprotein levels, increased endothelial dysfunction (ICAM-1) and organ failure, and worse clinical outcomes

    Dual thrombolytic therapy with mutant pro-urokinase and small bolus alteplase for ischemic stroke (DUMAS): study protocol for a multicenter randomized controlled phase II trial

    Get PDF
    BACKGROUND: The effectiveness of alteplase for ischemic stroke treatment is limited, partly due to the occurrence of intracranial and extracranial hemorrhage. Mutant pro-urokinase (m-proUK) does not deplete fibrinogen and lyses fibrin only after induction with alteplase. Therefore, this treatment has the potential to be safer and more efficacious than treatment with alteplase alone. The aim of this study is to assess the safety and efficacy of thrombolytic treatment consisting of a small bolus alteplase followed by m-proUK compared with standard thrombolytic treatment with alteplase in patients presenting with ischemic stroke. METHODS: DUMAS is a multicenter, phase II trial with a prospective randomized open-label blinded end-point (PROBE) design, and an adaptive design for dose optimization. Patients with ischemic stroke, who meet the criteria for treatment with intravenous (IV) alteplase can be included. Patients eligible for endovascular thrombectomy are excluded. Patients are randomly assigned (1:1) to receive a bolus of IV alteplase (5mg) followed by a continuous IV infusion of m-proUK (40 mg/h during 60 min) or usual care with alteplase (0.9 mg/kg). Depending on the results of interim analyses, the dose of m-proUK may be revised to a lower dose (30 mg/h during 60 min) or a higher dose (50 mg/h during 60 min). We aim to include 200 patients with a final diagnosis of ischemic stroke. The primary outcome is any post-intervention intracranial hemorrhage (ICH) on neuroimaging at 24 h according to the Heidelberg Bleeding Classification, analyzed with binary logistic regression. Efficacy outcomes include stroke severity measured with the National Institutes of Health Stroke Scale (NIHSS) at 24 h and 5-7 days, score on the modified Rankin scale (mRS) assessed at 30 days, change (pre-treatment vs. post-treatment) in abnormal perfusion volume, and blood biomarkers of thrombolysis at 24 h. Secondary safety endpoints include symptomatic intracranial hemorrhage, death, and major extracranial hemorrhage. This trial will use a deferred consent procedure. DISCUSSION: When dual thrombolytic therapy with a small bolus alteplase and m-proUK shows the anticipated effect on the outcome, this will lead to a 13% absolute reduction in the occurrence of ICH in patients with ischemic stroke. TRIAL REGISTRATION: NL7409 (November 26, 2018)/NCT04256473 (February 5, 2020)

    Expanded phenotypic spectrum of neurodevelopmental and neurodegenerative disorder Bryant-Li-Bhoj syndrome with 38 additional individuals.

    Get PDF
    Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research
    corecore