59 research outputs found

    Light trapping in solar cells at the extreme coupling limit

    Get PDF
    We calculate the maximal absorption enhancement obtainable by guided mode excitation in a weakly absorbing dielectric slab over wide wavelength ranges. The slab mimics thin film silicon solar cells in the low absorption regime. We consider simultaneously wavelength-scale periodicity of the texture, small thickness of the film, modal properties of the guided waves and their confinement to the film. Also we investigate the effect of the incident angle on the absorption enhancement. Our calculations provide tighter bounds for the absorption enhancement but still significant improvement is possible. Our explanation of the absorption enhancement can help better exploitation of the guided modes in thin film devices.Comment: accepted for publication in JOSA

    First limnological records of highly threatened tropical high-mountain crater lakes in Ethiopia

    Get PDF
    Lakes Dendi, Wonchi and Ziqualla are among the few remnants of undisturbed crater lakes in the central highlands of Ethiopia, and have never been investigated reliably owing to seclusion and inaccessibility. As the lakes offer a pristine environment in a beautiful landscape and are located in the vicinity of the capital city Addis Ababa, they are highly threatened by unsustainable tourism, shoreline and crater rim modifications, water abstraction and land grabbing. We provide a first limnological description to establish baseline data against which future environmental and biological changes can be monitored. The lakes are located above 2,800 m elevation with no surface outflow and generally show low concentrations of ions, displaying an equal distribution of readily soluble components like Na or K throughout the water column, but distinct oxygen depletion in greater depths linked to rising concentrations of Fe and Mn, which indicates subterranean springs. Based on nutrients, chlorophyll a, and water transparency, lakes Dendi and Wonchi are classified as oligotrophic and Ziqualla as oligo-mesotrophic. The phytoplankton community is dominated by coccal green algae, desmids and dinoflagellates in lakes Dendi and Wonchi, typical for unpolluted dilute waterbodies; whereas chlorococcales, in particular Botryococcus braunii and benthic diatoms, prevail in Ziqualla. The zooplankton fauna is depauperate, comprising a total of 11 rotifer taxa and 13 crustaceans. Copepods were the most abundant group and contributed over 60% to the total zooplankton abundance in all three lakes, followed by rotifers and cladocerans. The conservation significance of these lakes lies predominantly in their representation of dilute, nutrient–poor highland lake systems that support diverse biota assemblages like desmids and daphnids, which are highly sensitive to eutrophication

    Angular behavior of the absorption limit in thin film silicon solar cells

    Get PDF
    We investigate the angular behavior of the upper bound of absorption provided by the guided modes in thin film solar cells. We show that the 4n^2 limit can be potentially exceeded in a wide angular and wavelength range using two-dimensional periodic thin film structures. Two models are used to estimate the absorption enhancement; in the first one, we apply the periodicity condition along the thickness of the thin film structure but in the second one, we consider imperfect confinement of the wave to the device. To extract the guided modes, we use an automatized procedure which is established in this work. Through examples, we show that from the optical point of view, thin film structures have a high potential to be improved by changing their shape. Also, we discuss the nature of different optical resonances which can be potentially used to enhance light trapping in the solar cell. We investigate the two different polarization directions for one-dimensional gratings and we show that the transverse magnetic polarization can provide higher values of absorption enhancement. We also propose a way to reduce the angular dependence of the solar cell efficiency by the appropriate choice of periodic pattern. Finally, to get more practical values for the absorption enhancement, we consider the effect of parasitic loss which can significantly reduce the enhancement factor

    Unveiling the double-well energy landscape in a ferroelectric layer

    Get PDF
    The properties of ferroelectric materials, which were discovered almost a century agoÂč , have led to a huge range of applications, such as digital information storageÂČ , pyroelectric energy conversionÂł and neuromorphic computing⁎⁻⁔ . Recently, it was shown that ferroelectrics can have negative capacitance⁶⁻ÂčÂč, which could improve the energy efficiency of conventional electronics beyond fundamental limitsÂčÂČ⁻Âč⁎. In Landau–Ginzburg–Devonshire theoryÂč⁔⁻Âč⁷, this negative capacitance is directly related to the doublewell shape of the ferroelectric polarization–energy landscape, which was thought for more than 70 years to be inaccessible to experimentsÂč⁞. Here we report electrical measurements of the intrinsic double-well energy landscape in a thin layer of ferroelectric Hf₀.₅Zr₀.₅O₂. To achieve this, we integrated the ferroelectric into a heterostructure capacitor with a second dielectric layer to prevent immediate screening of polarization charges during switching. These results show that negative capacitance has its origin in the energy barrier in a double-well landscape. Furthermore, we demonstrate that ferroelectric negative capacitance can be fast and hysteresis-free, which is important for prospective applicationsÂčâč. In addition, the Hf₀.₅Zr₀.₅O₂ used in this work is currently the most industry-relevant ferroelectric material, because both HfO₂ and ZrO₂ thin films are already used in everyday electronicsÂČ⁰. This could lead to fast adoption of negative capacitance effects in future products with markedly improved energy efficiency

    Geometrical Impact on Guided Mode Excitation in Solar Cells

    Get PDF
    We investigate the influence of patterned metallic back reflector on absorption in thinfilm silicon photovoltaics. The impact of symmetry, periodicity, and angle of incidence of light is discussed by simulation and experiment

    Historical Spruce Abundance in Central Europe: A Combined Dendrochronological and Palynological Approach

    Get PDF
    Spruce is the most cultivated tree species in modern forestry in Central Europe, since it has the ability to grow on many soil types with profitable biomass accumulation. However, even-aged and uniform spruce forests are affected by recurring droughts and associated biotic stressors leading to large-scale diebacks across Central Europe causing controversies among foresters and nature conservationists. We investigate the role of spruce in historical woodlands by using 15666 spruce timbers from historical buildings and on the basis of pollen-based land cover estimates using the REVEALS model from 157 pollen sites in southern Central Europe. Start and end dates of the spruce timber samples and their dendrological characteristics (age, growth rates and stem diameters) were used to obtain information on past forest structures. Tree rings and REVEALS estimates are combined at a spatial scale of 1° × 1° resolution, grouped in four sub-regions, and a temporal resolution of 100-year time windows starting from 1150 to 1850 CE. We found that spruce dominates the species assemblage of construction timber with almost 41% and that the harvest age varies little through time, whereas a declining trend in growth rates and stem diameters are observed toward times before modern forestry. Temporal and regional differences in spruce abundance and building activity were found highlighting periods of (i) land abandonment and forest expansion in the 14th century, (ii) increased wood consumption during the 16th century due to population increase and beginning industrial developments, (iii) a forest recovery during and after the Thirty years' war, and (iv) afforestation efforts from the 1650s onwards. Furthermore, this study shows that spruce was constantly present in the study area in most studied sub-regions for the last 800 years. We demonstrate the need of combining tree-ring and pollen data to identify spatiotemporal patterns in spruce abundance and utilization.publishedVersio

    Old World megadroughts and pluvials during the Common Era

    Get PDF
    Climate model projections suggest widespread drying in the Mediterranean Basin and wetting in Fennoscandia in the coming decades largely as a consequence of greenhouse gas forcing of climate. To place these and other “Old World” climate projections into historical perspective based on more complete estimates of natural hydroclimatic variability, we have developed the “Old World Drought Atlas” (OWDA), a set of year-to-year maps of tree-ring reconstructed summer wetness and dryness over Europe and the Mediterranean Basin during the Common Era. The OWDA matches historical accounts of severe drought and wetness with a spatial completeness not previously available. In addition, megadroughts reconstructed over north-central Europe in the 11th and mid-15th centuries reinforce other evidence from North America and Asia that droughts were more severe, extensive, and prolonged over Northern Hemisphere land areas before the 20th century, with an inadequate understanding of their causes. The OWDA provides new data to determine the causes of Old World drought and wetness and attribute past climate variability to forced and/or internal variability
    • 

    corecore