96 research outputs found

    Polyphenol-peptide interactions in mitigation of Alzheimer’s disease : role of biosurface-induced aggregation

    Full text link
    Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder, responsible for nearly two-thirds of all dementia cases. In this review, we report the potential AD treatment strategies focusing on natural polyphenol molecules (green chemistry) and more specifically on the inhibition of polyphenol-induced amyloid aggregation/disaggregation pathways: in bulk and on biosurfaces. We discuss how these pathways can potentially alter the structure at the early stages of AD, hence delaying the aggregation of AÎČ and tau. We also discuss multidisciplinary approaches, combining experimental and modelling methods, that can better characterize the biochemical and biophysical interactions between proteins and phenolic ligands. In addition to the surface-induced aggregation, which can occur on surfaces where protein can interact with other proteins and polyphenols, we suggest a new concept referred as “confinement stability”. Here. on the contrary, the adsorption of AÎČ and tau on biosurfaces other than AÎČ- and tau-fibrils, e.g. red blood cells (RBCs), can lead to confinement stability that minimizes the aggregation of AÎČ and tau. Overall, these mechanisms may participate directly or indirectly in mitigating neurodegenerative diseases, by preventing protein self-association, slowing down the aggregation processes, and delaying the progression of AD

    Diagnostic ability of hand-held echocardiography in ventilated critically ill patients

    Get PDF
    STUDY OBJECTIVES: To compare the diagnostic capability of recently available hand-held echocardiography (HHE) and of conventional transthoracic echocardiography (TTE) used as a gold standard in critically ill patients under mechanical ventilation. DESIGN: A prospective and descriptive study. SETTING: The general intensive care unit of a teaching hospital. PATIENTS: All mechanically ventilated patients requiring a TTE study with a full-feature echocardiographic platform (Sonos 5500(Âź); Philips Medical Systems, Andover, MA, USA) also underwent an echocardiographic examination using a small battery-operated device (33 × 23 cm(2), 3.5 kg) (Optigo(Âź); Philips Medical Systems). INTERVENTIONS: Each examination was performed independently by two intensivists experienced in echocardiography and was interpreted online. For each patient, the TTE videotape was reviewed by a cardiologist experienced in echocardiography and the final interpretation was used as a reference diagnosis. RESULTS: During the study period, 106 TTE procedures were performed in 103 consecutive patients (age, 59 ± 18 years; Simplified Acute Physiology Score, 46 ± 14; body mass index, 26 ± 9 kg/m(2); positive end-expiratory pressure, 8 ± 4 cmH(2)O). The number of acoustic windows was comparable using HHE and TTE (233/318 versus 238/318, P = 0.72). HHE had a lower overall diagnostic capacity than TTE (199/251 versus 223/251 clinical questions solved, P = 0.005), mainly due to its lack of spectral Doppler capability. In contrast, diagnostic capacity based on two-dimensional imaging was comparable for both approaches (129/155 versus 135/155 clinical questions solved, P = 0.4). In addition, HHE and TTE had a similar therapeutic impact in 45 and 47 patients, respectively (44% versus 46%, P = 0.9). CONCLUSIONS: HHE appears to have a narrower diagnostic field when compared with conventional TTE, but promises to accurately identify diagnoses based on two-dimensional imaging in ventilated critically ill patients

    MIL-91(Ti), a small pore metal-organic framework which fulfils several criteria : an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport

    Get PDF
    The research leading to these results has received funding from the European Community Seventh Framework Program (FP7/2007-2013) [grant agreement number 608490] (project M4CO2) and from the ANR ‘CHESDENS’ (ANR-13-SEED-0001-01).A multidisciplinary approach combining advanced experimental and modelling tools was undertaken to characterize the promises of a small-pore type Ti-based metal-organic framework, MIL-91(Ti) for CO2 capture. This material was prepared using two synthesis strategies, i.e. under hydrothermal conditions and under reflux, and its single component adsorption behaviour with respect to CO2, CH4 and N2 was first revealed by gravimetry measurements. This hydrophilic and highly water stable MOF is characterized by a relatively high CO2 adsorption enthalpy. Molecular simulations combined with in situ powder X-ray diffraction evidenced that this is due to the combined interaction of this probe with N-H and P-O groups in the phosphonate linker. High CO2 selectivities in the presence of either N2 or CH4 were also predicted and confirmed by co-adsorption measurements. The possibility to prepare this sample under reflux represents an environmentally friendly route which can easily be upscaled. This green synthesis route, excellent water stability, high selectivities and relatively fast transport kinetics of CO2 are significant points rendering this sample of utmost interest for CO2 capture.PostprintPostprintPeer reviewe

    Discrete and Effortful Imagined Movements Do Not Specifically Activate the Autonomic Nervous System

    Get PDF
    International audienceBACKGROUND: The autonomic nervous system (ANS) is activated in parallel with the motor system during cyclical and effortful imagined actions. However, it is not clear whether the ANS is activated during motor imagery of discrete movements and whether this activation is specific to the movement being imagined. Here, we explored these topics by studying the baroreflex control of the cardiovascular system. METHODOLOGY/PRINCIPAL FINDINGS: Arterial pressure and heart rate were recorded in ten subjects who executed or imagined trunk or leg movements against gravity. Trunk and leg movements result in different physiological reactions (orthostatic hypotension phenomenon) when they are executed. Interestingly, ANS activation significantly, but similarly, increased during imagined trunk and leg movements. Furthermore, we did not observe any physiological modulation during a control mental-arithmetic task or during motor imagery of effortless movements (horizontal wrist displacements). CONCLUSIONS/SIGNIFICANCE: We concluded that ANS activation during motor imagery is general and not specific and physiologically prepares the organism for the upcoming effortful action

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter:Comparing meta and megaanalytical approaches for data pooling

    Get PDF
    Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9-85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large "mega-family". We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability

    Détection des hypopnées chez le patient suspect de syndrome des apnées obstructives au cours du sommeil (oxymétrie d'oreille versus oxymétrie de doigt)

    No full text
    CAEN-BU MĂ©decine pharmacie (141182102) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Valeurs normales et reproductibilité de la pression nasale de reniflement chez le jeune adulte sain

    No full text
    CAEN-BU MĂ©decine pharmacie (141182102) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Discrete and Effortful Imagined Movements Do Not Specifically Activate the Autonomic Nervous System

    No full text
    Background: The autonomic nervous system (ANS) is activated in parallel with the motor system during cyclical and effortful imagined actions. However, it is not clear whether the ANS is activated during motor imagery of discrete movements and whether this activation is specific to the movement being imagined. Here, we explored these topics by studying the baroreflex control of the cardiovascular system. Methodology/Principal Findings: Arterial pressure and heart rate were recorded in ten subjects who executed or imagined trunk or leg movements against gravity. Trunk and leg movements result in different physiological reactions (orthostatic hypotension phenomenon) when they are executed. Interestingly, ANS activation significantly, but similarly, increased during imagined trunk and leg movements. Furthermore, we did not observe any physiological modulation during a control mental-arithmetic task or during motor imagery of effortless movements (horizontal wrist displacements). Conclusions/Significance: We concluded that ANS activation during motor imagery is general and not specific and physiologically prepares the organism for the upcoming effortful action
    • 

    corecore