61 research outputs found

    Managing marine disease emergencies in an era of rapid change

    Get PDF
    Infectious marine diseases can decimate populations and are increasing among some taxa due to global change and our increasing reliance on marine environments. Marine diseases become emergencies when significant ecological, economic or social impacts occur. We can prepare for and manage these emergencies through improved surveillance, and the development and iterative refinement of approaches to mitigate disease and its impacts. Improving surveillance requires fast, accurate diagnoses, forecasting disease risk and real-time monitoring of disease-promoting environmental conditions. Diversifying impact mitigation involves increasing host resilience to disease, reducing pathogen abundance and managing environmental factors that facilitate disease. Disease surveillance and mitigation can be adaptive if informed by research advances and catalysed by communication among observers, researchers and decision-makers using information-sharing platforms. Recent increases in the awareness of the threats posed by marine diseases may lead to policy frameworks that facilitate the responses and management that marine disease emergencies require

    Thyroid Hormone Promotes Remodeling of Coronary Resistance Vessels

    Get PDF
    Low thyroid hormone (TH) function has been linked to impaired coronary blood flow, reduced density of small arterioles, and heart failure. Nonetheless, little is known about the mechanisms by which THs regulate coronary microvascular remodeling. The current study examined the initial cellular events associated with coronary remodeling induced by triiodothyronine (T3) in hypothyroid rats. Rats with established hypothyroidism, eight weeks after surgical thyroidectomy (TX), were treated with T3 for 36 or 72 hours. The early effects of T3 treatment on coronary microvasculature were examined morphometrically. Gene expression changes in the heart were assessed by quantitative PCR Array. Hypothyroidism resulted in arteriolar atrophy in the left ventricle. T3 treatment rapidly induced small arteriolar muscularization and, within 72 hours, restored arteriolar density to control levels. Total length of the capillary network was not affected by TX or T3 treatment. T3 treatment resulted in the coordinate regulation of Angiopoietin 1 and 2 expression. The response of Angiopoietins was consistent with vessel enlargement. In addition to the well known effects of THs on vasoreactivity, these results suggest that THs may affect function of small resistance arteries by phenotypic remodeling of vascular smooth muscle cells (VSMC)

    Systematic review of behaviour change techniques to promote participation in physical activity among people with dementia

    Get PDF
    Purpose. The objective of this study was to systematically review the evidence for the potential promise of behaviour change techniques (BCTs) to increase physical activity among people with dementia (PWD). Methods. PsychINFO, MEDLINE, CINAHL, and the Cochrane Central Register of Controlled Trials databases were searched 01/01/2000 - 01/12/2016. Randomised controlled / quasi-randomised trials were included if they recruited people diagnosed / suspected to have dementia, used at least one BCT in the intervention arm, and had at least one follow-up measure of physical activity / adherence. Studies were appraised using the Cochrane Collaboration risk of bias tool, and BCTs were coded using Michie et al.’s (2013) taxonomy. Intervention findings were narratively synthesised as either ‘very promising’, ‘quite promising’, or ‘non-promising’, and BCTs were judged as having potential promise if they featured in at least twice as many very / quite promising than non-promising interventions (as per Gardner et al., 2016). Results. Nineteen articles from 9 trials reported physical activity findings on behavioural outcomes (2 very promising, 1 quite promising, and 2 non-promising) or intervention adherence (1 quite promising and 4 non-promising). Thirteen BCTs were used across the interventions. While no BCT had potential promise to increase intervention adherence, three BCTs had potential promise for improving physical activity behaviour outcomes: goal setting (behaviour), social support (unspecified), and using a credible source. Conclusions. Three BCTs have potential promise for use in future interventions to increase physical activity among PWD. PROSPERO registration number: 2015:CRD42015020219

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Listeria: An Australian perspective (2001-2010)

    No full text
    Despite having a low occurrence rate, Listeria monocytogenes is one of the most prominent foodborne pathogens in Australia. The organism is responsible for severe outbreaks with high case fatality and substantial economic losses due to food recalls. In this study, we analyze the incidence trends of listeriosis in Australia during 2001-2010, discuss the relevance of food recalls, and investigate the pathogen's role in foodborne outbreaks. A significant epidemiological finding was a consistently high national age-specific rate recorded for individuals aged 60 years and over. Analysis of Australian Listeria outbreak and food recall data suggests deficiencies in food safety programs of food manufacturing businesses implicated in Listeria outbreaks and revealed that ready-to-eat foods are high-risk vehicles for transmitting listeriosis. Highlighted is Australia's highly efficient Listeria management and surveillance systems bolstered by the introduction of Listeria molecular subtyping in 2010 coupled with a nationally standardized questionnaire by the "Australian foodborne disease surveillance network (OzFoodNet)." The detection of clusters and therefore outbreaks was now possible, allowing cases to be linked across multiple jurisdictions and enabling timely public health action. Considering current changes in food production and consumption patterns, continuous monitoring and improvement of surveillance systems will provide ongoing public health benefits and be crucial to future development of food safety policy for Australia

    Genomic and Evolutionary Insights into Australian Toxigenic Vibrio cholerae O1 Strains

    No full text
    Vibrio cholerae O1 is the causative agent of cholera, a severe diarrheal disease which can cause death if left untreated. In this study, a collection of clinical and environmental V. cholerae serogroup O1 isolates from Australia (1977 to 1987) (from local cases and cases acquired through international travel) and publicly available international isolates were characterized for genotypic features (virulence genes, mobile genetic elements [MGEs], and antimicrobial resistance gene profiles). Whole-genome sequencing (WGS) was used to investigate and compare the genetic relatedness between the 44 Australian and nine travel-associated isolates and the 60 publicly available international V. cholerae sequences representing pre-seventh-pandemic (pre-7PET) isolates and different waves of 7PET isolates. In this study, 36 (81%) Australian clinical and aquatic isolates harbored the cholera toxin-producing genes located in the CTX bacteriophage region. All the Australian environmental and clinical isolates lacked the seventh-pandemic virulence-associated genomic islands (VSP-I and -II). In silico multilocus sequence typing (MLST) classified all nine internationally acquired isolates as sequence type 69 (ST69), 36 clinical and aquatic isolates as ST70, and eight isolates from Australia as ST71. Most of the nontoxigenic clinical and aquatic isolates of ST71 had diverse genetic variations compared to ST70 Australian strains. The antimicrobial resistance-associated genes gyrA, parC, and parE had no mutations in all the environmental and clinical isolates from Australia. The SXT genetic element and class 1 integron gene sequences were not detected in Australian strains. Moreover, in this study, a Bayesian evolutionary study suggests that two distinct lineages of ST71 (new set of strains) and ST70 strains were prevalent around similar times in Australia, in;1973 and 1969. IMPORTANCE Australia has its own indigenous V. cholerae strains, both toxigenic and nontoxigenic, that are associated with disease. Exotic strains are also detected in Australian patients returning from overseas travel. The clinical and aquatic V. cholerae O1 toxin gene-positive isolates from Australia responsible for cases in 1977 to 1987 were linked to acquisition from Queensland waterways but until now had not been characterized genetically. It is important to determine the genetic relatedness of Australian strains to international strains to assist in understanding their origin. This is the first extensive study to provide sequences and genomic analysis focused on toxigenic O1 V. cholerae clinical and environmental strains from Australia and its possible evolutionary relationship with other publicly available pre-7PET and 7PET V. cholerae strains. It is important to understand the population genetics of Australian V. cholerae from a public health perspective to assist in devising control measures and management plans for reducing V. cholerae exposure in Australia, given previous Australian disease clusters.</p
    corecore