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Infectious marine diseases can decimate populations and are increasing

among some taxa due to global change and our increasing reliance on

marine environments. Marine diseases become emergencies when significant

ecological, economic or social impacts occur. We can prepare for and manage

these emergencies through improved surveillance, and the development and

iterative refinement of approaches to mitigate disease and its impacts. Improv-

ing surveillance requires fast, accurate diagnoses, forecasting disease risk and

real-time monitoring of disease-promoting environmental conditions. Diver-

sifying impact mitigation involves increasing host resilience to disease,

reducing pathogen abundance and managing environmental factors that

facilitate disease. Disease surveillance and mitigation can be adaptive if

informed by research advances and catalysed by communication among

observers, researchers and decision-makers using information-sharing plat-

forms. Recent increases in the awareness of the threats posed by marine

diseases may lead to policy frameworks that facilitate the responses and man-

agement that marine disease emergencies require.

1. Introduction
Frequent and severe disease outbreaks are hypothesized to be a consequence of

cumulative natural and anthropogenic stressors and could affect many marine

species [1–3]. Most recently, a wasting disease outbreak decimated populations

of sea stars (Asteroidea) in intertidal and sub-tidal regions of eastern and western

North America [4]. In addition to uncounted deaths in the east, millions of indi-

viduals died in California, Oregon and Washington in 2013 and 2014 and more

are dying now in Alaska [5]. The high mortality rate, unprecedented geographi-

cal scope and multi-species scale of impacts caught the scientific and resource
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Figure 1. Marine diseases classifiable as emergencies due to the scope and scale of ecological, economic and social impacts. (a) Sea star wasting disease,
(b) eelgrass wasting disease, (c) shrimp white spot disease, (d ) white plague disease in the Caribbean coral Dendrogyra cylindrus, (e) Vibrio parahaemolyticus
and V. vulnificus infections in oysters and ( f ) epizootic shell disease in lobsters. Most of these as well as many other marine disease emergencies cause significant
impacts in more than one category. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150364

2

management community by surprise, emphasizing that we

lack an effective framework for the detection and manage-

ment of marine diseases.

The recent experience with the sea star wasting disease

(SSWD) outbreak suggests early detection and diagnosis

is the key to response and management. Fortunately, as

reports of marine disease impacts are increasing, so is interest

in creating policy to manage marine diseases. Such

policy needs to address several basic questions including:

(i) which marine disease outbreaks warrant management

responses? And, (ii) how can we prepare for and manage

marine disease emergencies? To answer these questions, we

describe how coordinated research and management of

marine diseases can reduce disease and its impacts for a var-

iety of marine organisms. We provide examples of ongoing

marine disease surveillance and response and discuss some

of the inconsistencies in the coordination of these efforts. In

the USA and Canada, governmental, non-profit and aca-

demic agencies often coordinate management responses.

However, many recent marine disease outbreaks constitute

emergencies not covered under current policies. Managing

emerging outbreaks is essential and viable with strategic

investment in research and response.
2. Which marine disease outbreaks are
emergencies that warrant management
responses?

Every disease is not an emergency. Parasites and pathogens

are common in seaweeds and fishes. The typical fish caught

by any marine angler often contains several parasite species,

yet may still appear healthy. Most infectious agents do not
cause noticeable disease and, even when they do, the result-

ing population impacts may be beneficial to the marine

community by returning host abundances to carrying

capacity [6]. Even mass mortalities may not constitute an

emergency if the die-off is localized, the outbreak is self-limit-

ing, the system is resilient to the loss of the host, the species’

existence is not under other threats, or the infectious agent

does not put human communities at risk. However, when a

disease causes large declines in the host population resulting

in endangerment of that taxa or precipitating lasting ecologi-

cal, economic or social impacts (figure 1), it becomes an

emergency [2,3,7].

We define marine diseases as emergencies for their dis-

ruption of ecosystem functioning if they remove keystone

predators or foundational species. For instance, the recent

SSWD outbreak described in the introduction remains an

emergency (figure 1a). Resultant ecological impacts are still

unfolding and include a reduction in long-term ecological

integrity through shifts in populations of foundation species

such as mussels and ecosystem engineers like sea urchins.

Seagrass wasting disease is a historical example (figure 1b)

[8]. In the 1930s, a seagrass wasting disease epidemic in the

North Atlantic extirpated an entire coastal ecosystem that

had provided food for migratory birds and valuable habitat

for commercially important fish and shellfish [9]. A range

of ecosystem services deteriorated as a result, including sedi-

ment retention, filtration of waste nutrients and carbon

sequestration [8,10]. While some ecological effects may be

expected from most marine diseases, they are of higher con-

cern when they reduce ecosystem services, biodiversity or

ecosystem-level resilience to additional stresses.

The most costly epidemics are those affecting commercial

species. The annual global value of wild and farmed fisheries

is estimated in the 100s of billions of US dollars [11]. At least
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67 infectious diseases have been identified as negatively

impacting the economy of marine-based industries [12]. For

example, billions of dollars were lost in the early 1990s as a

result of a global pandemic of white spot syndrome in

penaeid shrimp [12] (figure 1c). The pandemic was exacer-

bated by the high susceptibility of hosts to this viral

pathogen and the movement of infected product among

farms [12]. Subsequent management and mitigation of

white spot has resulted in a return to profitable shrimp farm-

ing [13]. Economic losses associated with reduced ecotourism

following disease outbreaks can also be substantial. Coral dis-

eases have led to widespread mass mortality of acroporid

corals throughout their geographical distribution [14]. In

the early 1980s, white band disease changed the structure

and composition of Caribbean coral reefs and affected reef-

dependent fisheries and tourism industries (figure 1d ) [14].

These examples demonstrate that marine diseases can cause

emergencies if the economic costs are substantial.

Marine disease emergencies can also have significant

social impacts capable of disrupting public safety, threaten-

ing human health or decreasing the resilience of local

human communities. Along with our reliance on ocean

resources, the probability of humans acquiring infections

from marine organisms is also increasing [15]. These

include brucellosis, leptospirosis and trichinellosis from

marine mammals, avian influenza from marine birds and

cryptosporidiosis and vibriosis from shellfish [16]. The

most common infection route is ingestion through seafood,

such as oysters. For example, transmission of pathogenic

Vibrio parahaemolyticus and V. vulnificus through shellfish

or other means can cause human gastrointestinal illness,

septicaemia, cellulitis and, in some cases, death (figure 1e)

[17]. Both V. parahaemolyticus and the more lethal V. vulnifi-
cus have increased recently as a direct response to ocean

warming [18]. The emergence of epizootic shell disease in

lobsters also demonstrates how marine diseases can

impact human communities. Shell disease has severely

damaged the historic southern New England stock, redu-

cing an important resource for lobster fishermen in Long

Island Sound and Cape Cod [19,20]. In turn, these losses

have downstream impacts on the livelihood and economic

vitality of these fishing communities. Collectively, these

examples demonstrate how disease outbreaks that constitute

emergencies can have ecological, economic and social

impacts.
3. How can we systematically prepare for and
manage marine disease emergencies?

Preparing for and managing marine diseases requires sur-

veillance and responsive mitigation (figure 2). Filling key

information and capacity gaps through research, outreach

and education informs management programmes for dis-

ease surveillance and mitigation. Consequently, the process

used to prepare for and manage a disease emergency is

adaptive; one refines diagnostic methods, initiates surveil-

lance programmes and tailors impact mitigation as

research advances and capacity among the community

builds (figure 2). The response framework we recommend

below highlights how effective disease surveillance creates

opportunities to proactively mitigate disease and its

impacts.
(a) Pathogen and disease surveillance: the key to
proactive impact mitigation

Disease surveillance requires the use of fast and accurate

diagnostic tools to identify causative agents within clinically

unhealthy individuals or to determine the presence of certain

pathogens in a host or environment. Some governmental,

non-profit and academic organizations do on-going marine

disease surveillance for numerous diseases (electronic sup-

plementary material, table S1). Federal agencies such as the

National Oceanic and Atmospheric Administration and the

National Institutes of Health monitor diseases of marine

mammals in the USA, universities and state agencies monitor

diseases in many crustaceans and shellfish in the USA and

Canada, and a variety of organizations including academic

institutions, international non-governmental organizations

and federal and state agencies monitor diseases of corals

around the globe. Diagnostic tools are critical for early detec-

tion in the absence of visible or clinical signs or when the

causative agent is unknown or multifactorial (e.g. dual infec-

tions or a combination of infection and temperature). Such

tools have to be paired with strategic spatio-temporal

sampling designed to detect new or emerging pathogens

close to their onset. This risk-based surveillance is impor-

tant because knowledge gaps in how infectious agents

propagate and disperse in the ocean constrain predictive

modelling. Nonetheless, when possible, data-driven fore-

casting of disease-promoting conditions or modelling of

disease dynamics can inform sampling programmes. This

can result in the application of mitigation strategies before,

or at the onset of an outbreak. Delaying diagnoses will be

likely to make the problem more difficult to manage.

Fortunately, new diagnostic techniques are under devel-

opment [21]. Recent advances in diagnostic tools such as

quantitative PCR, flow cytometry and immunocapture tech-

niques improve the ability to quantify specific pathogens at

low cost. For example, in a single run with the commercially

available platform Fluidigm BioMarkw, it is possible to sim-

ultaneously perform 96 unique diagnostic tests on 96 samples

while maintaining high analytical sensitivity [22]. The

Department of Fisheries and Oceans Canada is using this

platform to monitor wild and farmed salmonids for a multi-

tude of infections [23]. In total, 47 assays for 46 microbes

suspected or known to cause disease worldwide, including

four viruses that are listed by the World Organisation for

Animal Health (OIE), are in development for simultaneous

assessment using this platform [23,24]. The utility of such

diagnostic tools will continue to improve as we focus on

their application to marine disease.

Although powerful, diagnostic methods have their limit-

ations [25]. For example, qPCR recognizes and quantifies

DNA of the target species (assuming high specificity of the

assay), but does not imply viability or infection [26]. These

assays, when fully validated, can be used as proxies for parasite

or disease presence, especially in locations where the disease

(agent) has been confirmed. Validation of diagnostic tools is a

critical, non-trivial step. The OIE Manual of Diagnostic Tests

for Aquatic Animals describes assay validation as a four-stage

pathway to assess a test’s ‘fitness-for-purpose’ (e.g. screening

versus confirmatory assay) in a designated target population/

species: stage 1, analytical characteristics; stage 2, diagnostic

sensitivity and specificity; stage 3, reproducibility among lab-

oratories; and stage 4, programme implementation [24].
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Figure 2. A framework for adaptively managing marine disease emergencies. Routine disease surveillance enables early detection of more diseases. A working group
then determines whether the disease is an emergency, triggering responsive efforts to mitigate disease and downstream impacts. Surveillance tools and mitigation
approaches are informed by research and catalysed by effective communication among researchers, managers and stakeholders. (Online version in colour.)
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Completion of stages 1, 2 and 3 is interpreted as being fit for the

originally intended purpose, usually at a national level, and

would be expected for tests used in a diagnostic laboratory set-

ting. Without validation, interpretation of diagnostic test results

becomes challenging with unknown false positive and negative

rates. Development of validated diagnostic tools for pathogens

in non-commercial species, such as seastars, sea urchins and

many species of crabs or lobsters, is needed and may shed

light on the ecological role of the pathogen, whether it is obli-

gate, facultative or opportunist, a generalist or a specialist, and

if it is newly introduced to an area.

The advantages of rapid diagnostic tools are only realized

with strategic spatio-temporal sampling, which can be

informed through identification of risk factors using epide-

miological models, risk analysis and disease simulations.

Risk factors can relate to the host (e.g. species, demographic

stage and sex), pathogen (e.g. range expansions or changes in

virulence) or environment (e.g. temperature or salinity).

Filter-feeding shellfish that act as bioaggregators of microbes

in the water column can help monitor for the presence of

human pathogens. For instance, mussels in the northeast

coast of the USA have the highest disease prevalence and

parasite burdens in the USA mussel watch programme,

suggesting that this may be an area to target future surveil-

lance [27]. Similarly, marine mammals are monitored as

sentinel species for zoonotic pathogens, due to their phyloge-

netic and dietary similarity to humans, long-life and high-

level of exposure to pathogens [16]. In both cases, diagnostic

tools and strategic sampling have been paired to detect and

respond to diseases as well as understand their ultimate

causes (figure 3).

For some diseases affecting tropical corals, web-accessible

seasonal forecasts and near real-time assessments of outbreak
likelihoods exist. White syndrome outbreaks in Australia’s

Great Barrier Reef occurred with greater severity following

mild winters and when summer conditions were warm

[28,29]. These empirical findings were made possible by stra-

tegic monitoring programmes that assessed disease presence

and severity for 10 years. The forecasting tools developed

from such observations can visualize outbreak likelihoods

as high, medium or low based on data-driven mathematical

algorithms that query remotely sensed sea surface tempera-

ture datasets (figure 4). Assessments showing high

outbreak likelihoods trigger managers to target monitoring

efforts and, if disease is severe, implement actions to reduce

impacts or support recovery. Essentially, forecasting dis-

ease-promoting conditions increases support for and the

vigilance of those engaged in disease surveillance, which

can result in earlier and more robust disease detection.

Forecasting tools can be developed for other diseases if

two criteria are met: (i) the major environmental risk factors

for disease are known; and (ii) the relevant environmental

data are available regularly and at a sufficiently high quality

and spatial and temporal resolutions to represent conditions

the organisms experience [30]. Candidate diseases for the

development of forecasting tools include seagrass wasting

disease and abalone withering syndrome because field and

experimental data exist to calibrate and validate models.

Recent advances allow such forecasts and real-time assess-

ments of environmental conditions to be paired with

models of disease transmission and spread. For example,

three-dimensional oceanographic models that enable hydro-

dynamic modelling of environmentally sensitive pathogens

has proved useful for predicting transmission probabili-

ties of salmon pathogens, thereby influencing aquaculture

strategies in Norway [31]. Monitoring of environmental
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Figure 3. Cetacean morbillivirus (CeMV) causes dolphin stranding and mortality. Identifying CeMV as the cause of a mortality event depends on: fresh tissues,
trained responders (a), and available, equipped diagnostic laboratories. In 2013/2014 CeMV was detected by PCR, virus isolation and histology, which stains intensely
brown where the virus is present (b). This rapid response effort was made possible under the US Marine Mammal Health and Stranding Program. Under future
legislation, similar coordinated responses could be possible for diseases in other marine taxa. Photos courtesy of Virginia Aquarium & Marine Science Center (both)
and David Rotstein (b). (Online version in colour.)
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conditions conducive to marine disease outbreaks will be

increasingly important as the climate changes. As with diag-

nostics and sampling, developing data-driven forecasting

tools and predictive modelling for marine diseases will

require new investments in research that could be facilitated

by policy changes.

(b) Shifting host – pathogen – environment
relationships to mitigate disease

Management interventions can reduce the extent or severity

of the outbreak itself, dispelling the notion among some

that nothing can be done to reduce marine diseases [12]. Miti-

gation options include targeting the host or the infectious

agent, ameliorating disease-promoting environmental con-

ditions, or some combination (figure 5). The majority of

mitigation efforts undertaken to date have been for diseases

related to aquaculture and for marine mammals in wildlife

hospitals. Nonetheless, there are some examples of disease

mitigation in wild populations (table 1). These programmes

often target the host by reducing the pool of infectious or sus-

ceptible individuals. This includes vaccination (e.g. on fish

farms [39] or, for marine mammals [40]), application of

chemical treatments to lower pathogen intensity [39], culling

of diseased individuals or even whole populations (e.g. sabel-

lid worms in abalone and various pathogens in farmed

salmon [12]), and proper disposal of sick individuals that

incorporates biosecurity measurements (e.g. crabs with

bitter crab syndrome, bycatch or offal from processing

plants) [41,42]. Host populations can also be manipulated

by promoting increased resistance to disease. Frequencies of

resistant genotypes may be increased in wild populations

through the designation of marine protected areas (MPAs)

or sanctuaries, or in aquaculture populations through selec-

tive breeding. Both of these methods are being used to

increase resistance in oysters affected by MSX and dermo dis-

eases [33]. Managers are not forced to watch in despair as a

marine disease emergency unfolds.
Interventions that directly target marine pathogens are

effective by either direct removal of pathogens or manipu-

lation of microbial communities to reduce pathogen

virulence. Methods for direct removal of sea lice on salmon

farms include biological control by co-stocking with endemic

cleaner fish that are sea louse predators [43]. In another

approach, mussels (Mytilus edilus) are placed near salmon

farms to filter larval sea lice and pathogenic Vibrio bacteria

species from the water column [44,45]. These multi-trophic

approaches are promising for sustainable management of

various types of infections in aquaculture and warrant con-

tinued development. Phage therapy also has potential. In

this approach, pathogenic bacteria are targeted with specific

viruses that lyse the cells [46] or, in the case of the rickett-

sia-like organisms that cause withering syndrome in

abalone, reduce the virulence of the infected cells [47]. Inter-

ventions like these require creative problem-solving based on

research.

Altering the environmental conditions where marine dis-

eases occur can also be effective at reducing impacts. Many

natural marine habitats provide ecosystem services in the

form of disease reduction. For example, shrimp aquaculture

benefits from nearby mangrove forests, through filtering of

water-borne pollutants and supply of larval broodstock

[48]. Mangroves restoration could improve water quality

and reduce nutrients that trigger disease and reduce the

need to import shrimp larvae (which might introduce dis-

ease). Similarly, because seagrasses have been shown to

filter and detoxify human pathogens and other pollutants

[8,49], protecting or restoring seagrasses that harbour valu-

able bacteria with algicidal properties against harmful algal

blooms could have beneficial effects [50]. While environ-

mental manipulations are most feasible on smaller scales,

such as those relevant to aquaculture, they can also occur at

larger scales. For example, Vibrio sp. are known to increase

with nutrient-driven increases in estuarine plankton [51].

Watershed-based reductions of nutrient loading to estuarine

systems can retain the natural abundance and diversity of
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host pathogen environment

(b)(a) (c)

Figure 5. Management of oysters in the eastern US to reduce the impacts of Perkinsus marinus (dermo) and Haplosporidium nelsoni (MSX) can target the host, the
pathogen or the environment. Disease-resistant hosts are protected in sanctuaries from harvest to promote an increase in the frequency of resistant genotypes (a).
Biosecurity management focuses on pathogen screening in aquacultured seed (viewed histologically here) to prevent disease introduction into new areas and exacer-
bation of disease where it occurs (b). Conserving and restoring three-dimensional reef habitat enhances growth, reproduction and recruitment of healthy oyster
metapopulations (c). (Online version in colour.)
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bacterial and phytoplankton species in the receiving waters,

thereby reducing risks to human health [52]. Another effec-

tive strategy is to reduce the impacts of other stressors on

diseased species. For example, designation of MPAs can

decrease the amount of damage resulting from boats, aban-

doned fishing gear and human impacts [53]. Such areas

have lower coral disease prevalence than adjacent areas that

are frequently visited and fished [54].
(c) Mitigating downstream impacts of marine diseases
Mitigating marine disease itself reduces downstream ecologi-

cal, economic and social impacts; however, in many cases the

impacts themselves require mitigation. The local context and

constraints, including whether the affected populations and

communities can benefit from changes in human activities

or habitat restoration, will dictate what types of restoration

are possible. A recent meta-analysis suggests that, while

often slow, restoration of impacted ecosystems can be suc-

cessful [55]. These actions may help to mitigate economic

and social impacts, though there are also more direct options.
Direct mitigation of economic impacts of diseases can

include revising stock-recruitment fishery models to expli-

citly account for disease [56] and ensuring biosecurity

practices reduce or eliminate transport of infected individuals

and product. Both the Pacific herring and Tanner crab indus-

tries have used stock assessment models that include disease

and adjust allowable catch to account for disease-induced

mortality [32,38]. Changes to those fisheries models were

implemented after disease outbreaks occurred, but such

model adjustments can be made more proactively in the

future for other marine diseases through increased monitor-

ing of risk factors.

The billions of dollars lost due to white spot disease among

panaeid shrimp in the 1990s demonstrates the role that biose-

curity practices play in reducing economic impacts (figure 1c).

Biosecurity is also critically important for reducing the most

alarming of social impacts: human illness and death. Concerns

about spillover of marine diseases into humans usually

involve food or water-borne contact. Such contact can often

be reduced through public health messaging. For example,

when a V. parahaemolyticus outbreak occurs in a particular



Table 1. Marine disease mitigation in wild North American populations. Included are the disease mitigated, host and pathogen species, the agencies that have
conducted the mitigation, the strategies implemented and the project goal.

disease host pathogen mitigation approach agencya goal

bitter crab disease snow crabs Hematodinium sp. dispose of infected animals in

landfills; no culling of

diseased animals at sea [19]

DFO control

bitter crab disease Tanner crab Hematodinium sp. include disease in fisheries

models [32]

NOAA control

epizootic shell

disease

American

lobster

bacterial dysbiosis moratorium on being considered

on mid-Atlantic fishery [20]

ASMFC recovery

MSX, dermo oysters Haplosporidium

nelsoni, Perkinsus

marinus

promotion of resistant

populations through

sanctuaries from harvest,

rotational harvest programs

[33,34]

VMRC, MDNR recovery

sabellid infestation abalone,

black

turban

snails

sabellid polychaete

Terebrassabella

heterouncinata

culling of highly susceptible and

preferred hosts (black turban

snails), installing screens

at abalone mariculture

facility [35]

CDFG eradication

black band disease 12 coral

species

bacterial colonies vacuuming bacterial mat from

affected area and then sealing

with underwater epoxy [36]

NOAA,

universities

control disease

disease outbreak corals various close the reef to any human

activities [36]

NOAA prevent

transmission

viral haemorrhagic

septicaemia

(VHS)

salmonids viral haemorrhagic

septicaemia virus

(VHSv)

quarantine and cull hatchery

salmon testing positive [37]

WDFW control

icthyophoniasis, VHS Pacific

herring

Ichthophonus hoferi,

VHSv

include disease in fisheries

models [38]

NOAA control

aWDFW, Washington Department of Fish and Game; CDFG, California Department of Fish and Game; DFO, Department of Fisheries and Oceans Canada; ASMFC,
Atlantic States Marine Fisheries Commission; VMRC, Virginia Marine Resources Commission; MDNR, Maryland Department of Natural Resources.
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area, the Interstate Shellfish Sanitation Conference requires the

Shellfish Control Authority to immediately close the affected

area, issue an advisory and initiate a recall of oyster and

other shellfish products [57]. These examples can be tailored

for use with other marine diseases.

Disease management must be adaptive and involve

information exchange. Importantly, timely implementation

and trial of mitigation actions hinges entirely on disease

surveillance. For some types of marine disease management

decisions, competing interests will have to be balanced and

many groups will need to be involved. Resolving contentious

issues that may involve public health or industry viability

will require clear policy and coordinated efforts. This attests

to the value of future policy for bringing increased attention

and resource mobilization to marine disease responses.
4. Future directions and conclusion
Some marine disease outbreaks that qualify as emergencies are

ongoing (e.g. sea star wasting in Alaska and morbillivirus in
dolphins along the eastern seaboard of the USA) and new out-

breaks are certain to occur in the coming years. The framework

we used to summarize marine disease management can maxi-

mize opportunities to mitigate the impacts of future disease

emergencies. For the framework we recommend to be adaptive,

both surveillance and responsive impact mitigation need to be

informed by research and catalysed by effective communication

among research, management and stakeholder groups. Key

areas for investment of research effort include as follows.
(a) Surveillance
— Developing and evaluating more diagnostic tools and

increasing capacity among the science and management

communities to use these tools.

— Developing hydrodynamic models of pathogen propa-

gation and dispersal.

— Quantifying the nature of shifts in host, pathogen

and environment relationships under climate and

anthropogenic change and using these data to develop

monitoring and forecasting tools.
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(c) management with disease surveillance and forecasting

time

disease occurring but not detected

disease occurring and detected

disease mitigation implemented

data-driven forecasting and predictive modelling

possibility for mitigation of ecological,
economic and social impacts

minimal opportunities
for mitigation

possibility for mitigation
of disease and

ecological, economic and
social impacts

Figure 6. How the proposed disease management framework improves the timing of disease detection and extent of impact mitigation. Currently, marine diseases
are detected near or after their epidemic peak (a) and there is limited management of the disease outbreak or downstream ecological, economic or social and
cultural impact. Diseases could be detected earlier with greater disease surveillance, which increases management opportunities, especially for mitigating down-
stream impacts (b). Diseases are best managed when surveillance programmes can include data-driven forecasting and predictive modelling, ensuring mitigation
starts before the epidemic peak (c) (see also figure 4). (Online version in colour.)
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— Developing data-sharing and disease-mapping tools to

transfer information among scientists, managers and the

public.

(b) Impact mitigation
— Trialling and evaluating management actions implemented

to mitigate disease and its downstream impacts.

— Supporting the adaptive capacity of human communities

dependent on fisheries.

— Ensuring that vulnerability assessments of fisheries

include disease.

— Developing models and monitoring programmes to

assess disease impacts and mitigation plans.

(c) Development of marine disease adaptive
management policies

How might changes to policy help us diagnose and manage

marine diseases? One limitation is the lack of a coordinated

response or timely funding. For instance, investigation of
the sea star wasting disease depended on interested parties

donating time and resources. The need for policy that

supports marine disease emergency responses and manage-

ment is starting to be recognized by some governing

bodies. In response to the ongoing SSWD outbreak, Washing-

ton state representative Dennis Heck of the US Congress

introduced a bill that, if passed, will become the Marine Dis-

ease Emergency Act (MDE Act, HR936). This bill would

increase capacity for timely and coordinated responses to

future marine disease outbreaks and would: (i) ensure

marine disease outbreaks are considered for classification as

‘emergencies’; (ii) appoint a working group in the US

National Oceanic and Atmospheric Administration to

advise on assessing, declaring and responding to emergen-

cies; (iii) form a data repository to disseminate and facilitate

research to manage disease impacts; and (iv) designate finan-

cial resources for research and response coordination.

A similar programme, the US Unusual Mortality Event

(UME) programme, coordinates responses to marine

mammal mortality events. After unprecedented mortalities

of dolphins along the eastern seaboard of the USA in 1987

and 1988 [58], this programme was established under the

Marine Mammal Protection Act (MMPA) amendments in
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1992. The value of the MMPA for marine mammals was

demonstrated during the rapid response to increasing dol-

phin mortalities following the Deepwater Horizon oil spill

in the Gulf of Mexico [59]. However, the MMPA does not

cover either fish or invertebrates, hence the need for the pro-

posed MDE Act.

Disseminating surveillance data and research findings

through open access data repositories will facilitate research

and uptake of findings among decision-makers. The recent

proliferation of information-sharing platforms is a positive

part of this era of rapid change within which we have to

manage marine disease. Indeed, linked open data that

enables sophisticated data queries is already revolutionizing

human disease diagnosis and care management (e.g. [60]).

Such communication platforms can connect marine disease

researchers with decision-makers. Consequently, manage-

ment and responses coordinated under the MDE Act or

future similar legislation can be adaptive and effective

(figure 6). Research advances can be incorporated into
management strategy and responses can be coordinated

when disease is detected or anticipated, warranting these

marine emergencies the attention they require.
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