1,106 research outputs found

    A chrysophyte-based quantitative reconstruction of winter severity from varved lake sediments in NE Poland during the past millennium and its relationship to natural climate variability

    Get PDF
    Chrysophyte cysts are recognized as powerful proxies of cold-season temperatures. In this paper we use the relationship between chrysophyte assemblages and the number of days below 4 °C (DB4 °C) in the epilimnion of a lake in northern Poland to develop a transfer function and to reconstruct winter severity in Poland for the last millennium. DB4 °C is a climate variable related to the length of the winter. Multivariate ordination techniques were used to study the distribution of chrysophytes from sediment traps of 37 low-land lakes distributed along a variety of environmental and climatic gradients in northern Poland. Of all the environmental variables measured, stepwise variable selection and individual Redundancy analyses (RDA) identified DB4 °C as the most important variable for chrysophytes, explaining a portion of variance independent of variables related to water chemistry (conductivity, chlorides, K, sulfates), which were also important. A quantitative transfer function was created to estimate DB4 °C from sedimentary assemblages using partial least square regression (PLS). The two-component model (PLS-2) had a coefficient of determination of R2cross=0.58, with root mean squared error of prediction (RMSEP, based on leave-one-out) of 3.41 days. The resulting transfer function was applied to an annually-varved sediment core from Lake Żabińskie, providing a new sub-decadal quantitative reconstruction of DB4 °C with high chronological accuracy for the period AD 1000-2010. During Medieval Times (AD 1180-1440) winters were generally shorter (warmer) except for a decade with very long and severe winters around AD 1260-1270 (following the AD 1258 volcanic eruption). The 16th and 17th centuries and the beginning of the 19th century experienced very long severe winters. Comparison with other European cold-season reconstructions and atmospheric indices for this region indicates that large parts of the winter variability (reconstructed DB4 °C) is due to the interplay between the oscillations of the zonal flow controlled by the North Atlantic Oscillation (NAO) and the influence of continental anticyclonic systems (Siberian High, East Atlantic/Western Russia pattern). Differences with other European records are attributed to geographic climatological differences between Poland and Western Europe (Low Countries, Alps). Striking correspondence between the combined volcanic and solar forcing and the DB4 °C reconstruction prior to the 20th century suggests that winter climate in Poland responds mostly to natural forced variability (volcanic and solar) and the influence of unforced variability is low

    Decreasing Atmospheric CO2 During the Late Miocene Cooling

    Get PDF
    A pronounced late Miocene cooling (LMC) from ~7 to 5.7 Ma has been documented in extratropical and tropical sea surface temperature records, but to date, available proxy evidence has not revealed a significant pCO2 decline over this event. Here, we provide a new, high‐resolution pCO2 proxy record over the LMC based on alkenone carbon isotopic fractionation (εp) measured in sediments from the South Atlantic at Ocean Drilling Program (ODP) Site 1088. We apply a recent proxy calibration derived from a compilation of laboratory cultures, which more accurately reflects the proxy sensitivity to pCO2 changes during late Quaternary glacial‐interglacial cycles, together with new micropaleontological proxies to reconstruct past variations in algal growth rate, an important secondary influence on the εp. Our resulting pCO2 record suggests an approximately twofold to threefold decline over the LMC and confirms a strong coupling between climate and pCO2 through the late Miocene. Within this long‐term trend are pCO2 variations on sub‐myr timescales that may reflect 400‐kyr long‐eccentricity cycles, in which pCO2 minima coincide with several orbital‐scale maxima in published high‐resolution benthic δ18O records. These may correspond to ephemeral glaciations, potentially in the Northern Hemisphere. Our temperature and planktonic δ18O records from Site 1088 are consistent with substantial equatorward movement of Southern Ocean frontal systems during the LMC. This suggests that potential feedbacks between cooling, ocean circulation and deep ocean CO2 storage may warrant further investigation during the LMC

    Quantitative reconstruction of primary productivity in low latitudes during the last glacial maximum and the mid-to-late Holocene from a global Florisphaera profunda calibration dataset

    Get PDF
    [EN]Ocean net primary productivity (Npp) is a key component of the marine carbon cycle. Multi-model Npp projections based on a few decades of satellite data show large uncertainties, in particular at low latitudes (30°N−30°S). Calibration of sedimentary proxies with satellite-based Npp estimates allows for the quantitative reconstruction of this variable at longer time-scales. Relative abundance of deep-photic zone coccolithophore species Florisphaera profunda in the fossil record can potentially be used as a quantitative proxy for Npp. However, the robustness of this proxy calibration has been tested in very specific oceanographic settings using surface sediment samples. Here, we use a global dataset of surface sediment (n = 1258) and sediment trap (n = 26) samples with relative abundance data of F. profunda (%) to test the robustness of this proxy as a quantitative indicator of Npp. We study the modern and paleo-ecology of this species and the main factors affecting its latitudinal distribution. Results show that F. profunda % is a strong indicator of Npp at latitudes between 30°N and 30°S, while at higher latitudes temperature-related variables are more important. We develop a global calibration model between satellite Npp estimates and F. profunda for the latitudinal range between 30°N and 30°S, and we apply it to several low-latitude sediment cores with available F. profunda counts covering the Late Glacial Maximum (LGM; 24–19 ka) and the Mid-to-Late Holocene period (MLH; <6 ka). Reconstructed Npp during the LGM is 15% higher than during the MLHdue to the intensification of trade winds that enhanced oceanic upwelling at low latitudes

    Unexplored outflows in nearby low luminosity AGNs: the case of NGC 1052

    Get PDF
    Outflows play a central role in galaxy evolution shaping the properties of galaxies. Understanding outflows and their effects in low luminosity AGNs, such as LINERs, is essential (e.g. they are a numerous AGN population in the local Universe). We obtained VLT/MUSE and GTC/MEGARA optical IFS-data for NGC1052, the prototypical LINER. The stars are distributed in a dynamically hot disc, with a centrally peaked velocity dispersion map and large observed velocity amplitudes. The ionised gas, probed by the primary component is detected up to \sim30arcsec (\sim3.3 kpc) mostly in the polar direction with blue and red velocities (\midV\mid<<250 km/s). The velocity dispersion map shows a notable enhancement (σ\sigma>>90 km/s) crossing the galaxy along the major axis of rotation in the central 10arcsec. The secondary component has a bipolar morphology, velocity dispersion larger than 150 km/s and velocities up to 660 km/s. A third component is detected but not spatially resolved. The maps of the NaD absorption indicate optically thick neutral gas with a velocity field consistent with a slow rotating disc (Δ\DeltaV = 77±\pm12 km/s) but the velocity dispersion map is off-centred without any counterpart in the flux map. We found evidence of an ionised gas outflow with mass of 1.6±\pm0.6 ×\times 105^{5} Msun, and mass rate of 0.4±\pm0.2 Msun/yr. The outflow is propagating in a cocoon of gas with enhanced turbulence and might be triggering the onset of kpc-scale buoyant bubbles (polar emission). Taking into account the energy and kinetic power of the outflow (1.3±\pm0.9 ×\times 1053^{53} erg and 8.8±\pm3.5 ×\times 1040^{40} erg/s, respectively) as well as its alignment with both the jet and the cocoon, and that the gas is collisionally ionised, we consider that the outflow is jet-powered, although some contribution from the AGN is possible.Comment: A&A accepted 04/04/2022, 31 pages, 12 figures and 3 appendixe

    Overabundance of alpha-elements in exoplanet host stars

    Full text link
    We present the results for a chemical abundance analysis between planet-hosting and stars without planets for 12 refractory elements for a total of 1111 nearby FGK dwarf stars observed within the context of the HARPS GTO programs. Of these stars, 109 are known to harbour high-mass planetary companions and 26 stars are hosting exclusively Neptunians and super-Earths. We found that the [X/Fe] ratios for Mg, Al, Si, Sc, and Ti both for giant and low-mass planet hosts are systematically higher than those of comparison stars at low metallicities ([Fe/H] < from -0.2 to 0.1 dex depending on the element). The most evident discrepancy between planet-hosting and stars without planets is observed for Mg. Our data suggest that the planet incidence is greater among the thick disk population than among the thin disk for mettallicities bellow -0.3 dex. After examining the [alpha/Fe] trends of the planet host and non-host samples we conclude that a certain chemical composition, and not the Galactic birth place of the stars, is the determinating factor for that. The inspection of the Galactic orbital parameters and kinematics of the planet-hosting stars shows that Neptunian hosts tend to belong to the "thicker" disk compared to their high-mass planet-hosting counterparts.We also found that Neptunian hosts follow the distribution of high-alpha stars in the UW vs V velocities space, but they are more enhanced in Mg than high-alpha stars without planetary companions. Our results indicate that some metals other than iron may also have an important contribution to planet formation if the amount of iron is low. These results may provide strong constraints for the models of planet formation, especially for planets with low mass.Comment: 10 pages, 8 figures, 3 tables, accepted for publication in Astronomy & Astrophysic

    Technical note: No impact of alkenone extraction on foraminiferal stable isotope, trace element and boron isotope geochemistry

    Get PDF
    Recent advances in geochemical techniques mean that several robust proxies now exist to determine the past carbonate chemistry of the oceans. Foraminiferal δ11B and alkenone carbon isotopes allow us to reconstruct sea-surface pH and pCO2, respectively, and the ability to apply both proxies to the same sediment sample would give strongly paired datasets and reduce sample waste. However, no studies to date have examined whether the solvents and extraction techniques used to prepare alkenones for analysis also impact the geochemistry of foraminifera within those sediments. Here we examine six species pairs of planktic foraminifera, with half being taken from non-treated sediments and half being taken from sediments where alkenones have been extracted. We look for visual signs of contrasting preservation and compare analyses of δ18O, δ13C, δ11B and trace elements (Li, B, Na, Mn, Mg, Sr and U/Ca). We find no consistent geochemical offset between the treatments and excellent agreement in δ11B measurements between them. Our results show that boron isotope reconstructions of pH in foraminifera from alkenone-extracted sediments can be applied with confidence.</p

    Time-Fractional Optimal Control of Initial Value Problems on Time Scales

    Full text link
    We investigate Optimal Control Problems (OCP) for fractional systems involving fractional-time derivatives on time scales. The fractional-time derivatives and integrals are considered, on time scales, in the Riemann--Liouville sense. By using the Banach fixed point theorem, sufficient conditions for existence and uniqueness of solution to initial value problems described by fractional order differential equations on time scales are known. Here we consider a fractional OCP with a performance index given as a delta-integral function of both state and control variables, with time evolving on an arbitrarily given time scale. Interpreting the Euler--Lagrange first order optimality condition with an adjoint problem, defined by means of right Riemann--Liouville fractional delta derivatives, we obtain an optimality system for the considered fractional OCP. For that, we first prove new fractional integration by parts formulas on time scales.Comment: This is a preprint of a paper accepted for publication as a book chapter with Springer International Publishing AG. Submitted 23/Jan/2019; revised 27-March-2019; accepted 12-April-2019. arXiv admin note: substantial text overlap with arXiv:1508.0075

    Ancient marine sediment DNA reveals diatom transition in Antarctica

    Get PDF
    Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to openocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to open-ocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.Postprin

    P. brasiliensis virulence is affected by SconC, the negative regulator of inorganic sulfur assimilation

    Get PDF
    Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis.J.F.M. and J.G.R. were supported by a PhD grant from Fundacao para a Ciencia e Tecnologia (FCT). This work was supported by a grant from FCT (PTDC/BIA-MIC/108309/2008). M. Sturme. and M. Saraiva are Ciencia 2008 fellows. The authors would also like to thank FAPESP (Fundacao para Amparo a Pesquisa do Estado de Sao Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore