7 research outputs found
Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
Decadal trajectories of phytoplankton communities in contrasted estuarine systems in an epicontinental sea
In coastal areas, global changes are known to affect estuaries and their plume leading to water temperature increase and river discharge variations, which are two of the main drivers controlling phytoplankton dynamics. This paper aims at understanding the past 10 years' variations in term of communities' stability and trajectories along with their relationship with the environment. Considering the high environmental variability along coastal areas, we focused our study on six contrasted estuarine systems from the eastern English Channel. Using monthly monitoring from 2008 to 2019, the response of the micro-phytoplankton compartment was investigated through the abundances of 110 species and several abiotic parameters' records. The results indicate an overall stability in community composition with an average of 30–40% similarity between pairs of samples over the study period. The phytoplankton assemblages also display greater spatial heterogeneity during summer in comparison with other seasons. The co-inertia analysis highlighted four separate systems linked to major drivers; a system under strong river and nutrient flows influence, a well-mixed and oxygenized estuary, a system challenged by offshore marine waters, and finally a system under shellfish farms pressure. This structuration is built from the dominance of a handful of species that differs from one place to another, which explains why phytoplankton is mostly site specific. Additionally, the low variations lead by few species’ dominance also explains the inter-annual stability noticed during summer at each area, in spite of the high diversity observed
Satellite and in situ monitoring of Chl-a, Turbidity, and Total Suspended Matter in coastal waters: experience of the year 2017 along the French Coasts
International audienceThe consistency of satellite and in situ time series of Chlorophyll-a (Chl-a), Turbidity and Total Suspended Matters (TSM) was investigated at 17 coastal stations throughout the year 2017. These stations covered different water types, from relatively clear waters in the Mediterranean Sea to moderately turbid regions in the Bay of Biscay and the southern bight of the North-Sea. Satellite retrievals were derived from MODIS/AQUA, VIIRS/NPP and OLCI-A/Sentinel-3 spectral reflectance. In situ data were obtained from the coastal phytoplankton networks SOMLIT (CNRS), REPHY (Ifremer) and associated networks. Satellite and in situ retrievals of the year 2017 were compared to the historical seasonal cycles and percentiles, 10 and 90, observed in situ. Regarding the sampling frequency in the Mediterranean Sea, a weekly in situ sampling allowed all major peaks in Chl-a caught from space to be recorded at sea, and, conversely, all in situ peaks were observed from space in a frequently cloud-free atmosphere. In waters of the Eastern English Channel, lower levels of Chl-a were observed, both in situ and from space, compared to the historical averages. However, despite a good overall agreement for low to moderate biomass, the satellite method, based on blue and green wavelengths, tends to provide elevated and variable Chl-a in a high biomass environment. Satellite-derived TSM and Turbidity were quite consistent with in situ measurements. Moreover, satellite retrievals of the water clarity parameters often showed a lower range of variability than their in situ counterparts did, being less scattered above and under the seasonal curves of percentiles 10 and 90
Diseño, desarrollo y evaluación preclínica de SOBERANA®02: una vacuna cubana contra COVID-19
International audienc
PHYTOBS dataset - French National Service of Observation for Phytoplankton in coastal waters
The PHYTOBS dataset includes long-term time series on marine microphytoplankton, since 1987, along the whole French metropolitan coast. Microphytoplankton data cover microscopic taxonomic identifications and counts. The whole dataset is available, it includes 25 sampling locations.PHYTOBS network studies microphytoplankton diversity in the hydrological context along French coasts under gradients of anthropogenic pressures. PHYTOBS network allows to analyse the responses of phytoplankton communities to environmental changes, to assess the quality of the coastal environment through indicators, to define ecological niches, to detect variations in bloom phenology, and to support any scientific question by providing data.The PHYTOBS network provides the scientific community and stakeholders with validated and qualified data, in order to improve knowledge regarding biomass, abundance and composition of marine microphytoplankton in coastal and lagoon waters in their hydrological context.PHYTOBS originates of two networks. The historical REPHY (French Observation and Monitoring program for Phytoplankton and Hydrology in coastal waters) supported by Ifremer since 1984 and the SOMLIT (Service d'observation en milieu littoral) supported by INSU-CNRS since 1995. The monitoring has started in 1987 on some sites and later in others.Hydrological data are provided by REPHY or SOMLIT network as a function of site locations