169 research outputs found
EFFICACY AND SAFETY OF EPTACOG BETA (RECOMBINANT HUMAN FVIIA) ACCORDING TO AGE IN PERSONS WITH HAEMOPHILIA A/B WITH INHIBITORS UNDERGOING SURGICAL PROCEDURES
Introduction: Eptacog beta (CEVENFACTA®) is a new rFVIIa approved by the EMA for the treatment of bleeding events and prevention of bleeding during surgery in persons with haemophilia A/B with inhibitors (PwHABI) aged ≥12 years (y).
Methods: PERSEPT 3 was a Phase 3 (NCT02020369) trial of eptacog beta in PwHABI who required surgical procedures. Eptacog beta was administered at an initial dose of 200μg/kg or 75μg/kg for major or minor procedures respectively. This was followed by 75μg/kg for ≥5 (major procedures) or ≥2 (minor procedures) days. Haemostatic efficacy was assessed using a 4-point scale during the intra and postoperative care period (primary efficacy endpoint was determined by the investigator at the study centre 48±4h after the last dose of eptacog beta, based on the totality of the assessments performed on the patient (pt) at each timepoint). This post-hoc analysis compared the efficacy and safety of eptacog beta by age (pts aged \u3c12 vs ≥12y).
Results: Twelve pts were included (\u3c12y: n=5, 1 major and 4 minor procedures; ≥12y: n=7, 5 major and 2 minor procedures). The primary endpoint success proportion was 100% (95% CI: 39.8-100) in pts aged \u3c12y (4 successes, 1 missing) and 71.4% (95% CI: 29.0-96.3) in pts aged ≥12y (5 successes; 2 failures). The intraoperative success proportion was 100% (95% CI: 47.8-100) for pts aged \u3c12y (5 successes) and 100% (95% CI: 59.0-100) for pts aged ≥12y (7 successes). The success proportion 24h post-procedure was 100% (95% CI: 47.8-100) for pts aged \u3c12y (5 successes) and 100% (95% CI: 47.8-100) for pts aged ≥12y (5 successes; 2 missing). Two pts discontinued treatment (1 aged \u3c12y withdrew consent; 1 aged ≥12y due to an adverse event (AE): postprocedural hematoma). One pt experienced 2 serious AEs leading to death, both were considered unrelated to the treatment. No allergic or thrombotic events occurred; no neutralising antibodies were detected. Antifibrinolytics were used concomitantly with eptacog beta in 4 patients without any safety concerns.
Discussion/Conclusion: This post-hoc subgroup analysis shows that eptacog beta is effective and well-tolerated in perioperative care irrespective of patient age (\u3c12 vs ≥12y), supporting the use of eptacog beta for bleed management (prevention and treatment) in major and minor surgical procedures in all PwHABI
Does flip-flop style footwear modify ankle biomechanics and foot loading patterns?
Background
Flip-flops are an item of footwear, which are rubber and loosely secured across the dorsal fore-foot. These are popular in warm climates; however are widely criticised for being detrimental to foot health and potentially modifying walking gait. Contemporary alternatives exist including FitFlop, which has a wider strap positioned closer to the ankle and a thicker, ergonomic, multi-density midsole. Therefore the current study investigated gait modifications when wearing flip-flop style footwear compared to barefoot walking. Additionally walking in a flip-flop was compared to that FitFlop alternative.
Methods
Testing was undertaken on 40 participants (20 male and 20 female, mean ± 1 SD age 35.2 ± 10.2 years, B.M.I 24.8 ± 4.7 kg.m−2). Kinematic, kinetic and electromyographic gait parameters were collected while participants walked through a 3D capture volume over a force plate with the lower limbs defined using retro-reflective markers. Ankle angle in swing, frontal plane motion in stance and force loading rates at initial contact were compared. Statistical analysis utilised ANOVA to compare differences between experimental conditions.
Results
The flip-flop footwear conditions altered gait parameters when compared to barefoot. Maximum ankle dorsiflexion in swing was greater in the flip-flop (7.6 ± 2.6°, p = 0.004) and FitFlop (8.5 ± 3.4°, p < 0.001) than barefoot (6.7 ± 2.6°). Significantly higher tibialis anterior activation was measured in terminal swing in FitFlop (32.6%, p < 0.001) and flip-flop (31.2%, p < 0.001) compared to barefoot. A faster heel velocity toward the floor was evident in the FitFlop (−.326 ± .068 m.s−1, p < 0.001) and flip-flop (−.342 ± .074 m.s−1, p < 0.001) compared to barefoot (−.170 ± .065 m.s−1). The FitFlop reduced frontal plane ankle peak eversion during stance (−3.5 ± 2.2°) compared to walking in the flip-flop (−4.4 ± 1.9°, p = 0.008) and barefoot (−4.3 ± 2.1°, p = 0.032). The FitFlop more effectively attenuated impact compared to the flip-flop, reducing the maximal instantaneous loading rate by 19% (p < 0.001).
Conclusions
Modifications to the sagittal plane ankle angle, frontal plane motion and characteristics of initial contact observed in barefoot walking occur in flip-flop footwear. The FitFlop may reduce risks traditionally associated with flip-flop footwear by reducing loading rate at heel strike and frontal plane motion at the ankle during stance
Advancing measurements and representations of subsurface heterogeneity and dynamic processes: towards 4D hydrogeology
Essentially all hydrogeological processes are strongly influenced by the subsurface spatial heterogeneity and the temporal variation of environmental conditions, hydraulic properties, and solute concentrations. This spatial and temporal variability generally leads to effective behaviors and emerging phenomena that cannot be predicted from conventional approaches based on homogeneous assumptions and models. However, it is not always clear when, why, how, and at what scale the 4D (3D + time) nature of the subsurface needs to be considered in hydrogeological monitoring, modeling, and applications. In this paper, we discuss the interest and potential for the monitoring and characterization of spatial and temporal variability, including 4D imaging, in a series of hydrogeological processes: (1) groundwater fluxes, (2) solute transport and reaction, (3) vadose zone dynamics, and (4) surface–subsurface water interactions. We first identify the main challenges related to the coupling of spatial and temporal fluctuations for these processes. We then highlight recent innovations that have led to significant breakthroughs in high-resolution space–time imaging and modeling the characterization, monitoring, and modeling of these spatial and temporal fluctuations. We finally propose a classification of processes and applications at different scales according to their need and potential for high-resolution space–time imaging. We thus advocate a more systematic characterization of the dynamic and 3D nature of the subsurface for a series of critical processes and emerging applications. This calls for the validation of 4D imaging techniques at highly instrumented observatories and the harmonization of open databases to share hydrogeological data sets in their 4D components
Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi
The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens. Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2). Accordingly, we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina. To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance, we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P. cucumerina. This analysis, together with metabolomic studies, demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi, such as the salicylic acid, jasmonic acid, ethylene, abscisic acid, and tryptophan-derived metabolites signaling, as these pathways were not impaired in agb1 and agg1 agg2 mutants. Notably, many mis-regulated genes in agb1 plants were related with cell wall functions, which was also the case in agg1 agg2 mutant. Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants, and that mutant walls had similar FTIR spectratypes, which differed from that of wild-type plants. The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition
The selective peroxisome proliferator-activated receptor alpha modulator (SPPARM) paradigm : conceptual framework and therapeutic potential: A consensus statement from the International Atherosclerosis Society (IAS) and the Residual Risk Reduction Initiative (R3i) Foundation
In the era of precision medicine, treatments that target specific modifiable characteristics of high-risk patients have the potential to lower further the residual risk of atherosclerotic cardiovascular events. Correction of atherogenic dyslipidemia, however, remains a major unmet clinical need. Elevated plasma triglycerides, with or without low levels of high-density lipoprotein cholesterol (HDL-C), offer a key modifiable component of this common dyslipidemia, especially in insulin resistant conditions such as type 2 diabetes mellitus. The development of selective peroxisome proliferator-activated receptor alpha modulators (SPPARM) offers an approach to address this treatment gap. This Joint Consensus Panel appraised evidence for the first SPPARM agonist and concluded that this agent represents a novel therapeutic class, distinct from fibrates, based on pharmacological activity, and, importantly, a safe hepatic and renal profile. The ongoing PROMINENT cardiovascular outcomes trial is testing in 10,000 patients with type 2 diabetes mellitus, elevated triglycerides, and low levels of HDL-C whether treatment with this SPPARM agonist safely reduces residual cardiovascular risk.Peer reviewe
Residual vascular risk in diabetes – will the SPPARM alpha concept hold the key?
No abstract available
Physiological Correlates of Volunteering
We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation
- …