65 research outputs found
Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments
Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made
available as an electronic reprint with the permission of ASM International. One print or electronic copy may
be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or
modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
Fire as a fundamental ecological process: Research advances and frontiers
Fire is a powerful ecological and evolutionary force that regulates organismal traits, population sizes, species interactions, community composition, carbon and nutrient cycling and ecosystem function. It also presents a rapidly growing societal challenge, due to both increasingly destructive wildfires and fire exclusion in fire‐dependent ecosystems. As an ecological process, fire integrates complex feedbacks among biological, social and geophysical processes, requiring coordination across several fields and scales of study.
Here, we describe the diversity of ways in which fire operates as a fundamental ecological and evolutionary process on Earth. We explore research priorities in six categories of fire ecology: (a) characteristics of fire regimes, (b) changing fire regimes, (c) fire effects on above‐ground ecology, (d) fire effects on below‐ground ecology, (e) fire behaviour and (f) fire ecology modelling.
We identify three emergent themes: the need to study fire across temporal scales, to assess the mechanisms underlying a variety of ecological feedbacks involving fire and to improve representation of fire in a range of modelling contexts.
Synthesis : As fire regimes and our relationships with fire continue to change, prioritizing these research areas will facilitate understanding of the ecological causes and consequences of future fires and rethinking fire management alternatives
Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
Classification of current anticancer immunotherapies
During the past decades, anticancer immunotherapy has evolved from a promising
therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are
now approved by the US Food and Drug Administration and the European Medicines
Agency for use in cancer patients, and many others are being investigated as standalone
therapeutic interventions or combined with conventional treatments in clinical
studies. Immunotherapies may be subdivided into “passive” and “active” based on
their ability to engage the host immune system against cancer. Since the anticancer
activity of most passive immunotherapeutics (including tumor-targeting monoclonal
antibodies) also relies on the host immune system, this classification does not properly
reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer
immunotherapeutics can be classified according to their antigen specificity. While some
immunotherapies specifically target one (or a few) defined tumor-associated antigen(s),
others operate in a relatively non-specific manner and boost natural or therapy-elicited
anticancer immune responses of unknown and often broad specificity. Here, we propose
a critical, integrated classification of anticancer immunotherapies and discuss the clinical
relevance of these approaches
Plasma lipid profiles discriminate bacterial from viral infection in febrile children
Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar
Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells.
Toll-like receptor (TLR) 2 and TLR4 play a pivotal role in recognition of Candida albicans. We demonstrate that TLR2(-/-) mice are more resistant to disseminated Candida infection, and this is associated with increased chemotaxis and enhanced candidacidal capacity of TLR2(-/-) macrophages. Although production of the proinflammatory cytokines TNF, IL-1alpha, and IL-1beta is normal, IL-10 release is severely impaired in the TLR2(-/-) mice. This is accompanied by a 50% decrease in the CD4+CD25+ regulatory T (Treg) cell population in TLR2(-/-) mice. In vitro studies confirmed that enhanced survival of Treg cells was induced by TLR2 agonists. The deleterious role of Treg cells on the innate immune response during disseminated candidiasis was underscored by the improved resistance to this infection after depletion of Treg cells. In conclusion, C. albicans induces immunosuppression through TLR2-derived signals that mediate increased IL-10 production and survival of Treg cells. This represents a novel mechanism in the pathogenesis of fungal infections
Mechanism and Specificity of Reconstitution of Dimeric Lactate Dehydrogenase from Limulus polyphemus
- …