43 research outputs found

    Physical Properties of Arctic and Antarctic Aerosol Particles and Cloud Condensation Nuclei

    Get PDF
    Aerosol Partikel interagieren mit solarer und terrestrischer Strahlung durch Absorption und Streuung. Zusätzlich bilden und modifizieren sie die Eigenschaften von Wolken da sie das Potential besitzen als Wolkenkondensationskeim (CCN) fungieren zu können und stellen somit eine wichtige Komponente im Klimasystem dar. Die Eigenschaften von Partikeln und CCN müssen genaustens bekannt sein um deren Einfluss in Klima- und Strahlungsmodellen akurat berücksichtigen zu können. Ziel dieser Arbeit ist die Charakterisierung der Partikeleigenschaften in Regionen, welche das Klima maßgeblich beeinflussen, wie die Arktis und die Antarktis. Im Rahmen dieser Arbeit wurden 2 Datensätze aufgenommen, welche helfen das Verständnis über Partikel und CCN im Frühjar und Sommer in der Arktis und Antarktis zu verbessern. Es wurden jeweils die Gesamt- und die CCN-Anzahlkonzentration (NCN, NCCN), die Anzahlgrößenverteilung (PNSD) und der Hygroskopizitätsparameter (k) der Partikel bestimmt. Die Herkunft der vermessenen Partikel wurde mit Rückwärtstrajektorien ermittelt sowie weitere Analysen bezüglich der Verweilzeiten durchgeführt. Beide Datensätze zeigen, dass eine starke Abhängigkeit der Partikel- und CCN-Eigenschaften vom Luftmassenursprung vorliegt. Zeigen arktische PNSDs nur eine Akkumulationsmode, konnte diese auf gealtertes Aerosol mit einem eurasischen Ursprung zurückgeführt werden. Kommt eine zweite Mode mit kleineren Partikeln hinzu, wurde der Nord-Pazifische Raum als Ursprung bestimmt. In der Antarktis wurde besonders für NCN und NCCN eine starke Abhängigkeit vom Luftmassenursprung gefunden. Dabei konnten mit der Anwendung des Dispersionsmodells NAME Antarktische Hintergrundkonzentrationen ermittelt werden. Weiterhin wurde gefunden, dass Antarktische Aerosolpartikel mit einem k von 1 hygroscopischer als das Arktische ist, für welches ein k von 0,19 bestimmt wurde. Zusätzlich durchgeführte Flugzeugmessungen über Tuktoyaktuk (Arktis) zeigen, dass die Messungen am Boden auch repräsentativ für die Grenzschicht sind. Die Schichten über der Grenzschicht scheinen jedoch von dieser entkoppelt zu sein und es wird vermutet, dass der Ursprung der Partikel in größeren Höhen in niedrigeren geographischen Breiten liegt.:Contents List of Abbreviations iii List of Symbols v 1. Introduction 1 2. Experimental 9 2.1. Measured Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1. Total Particle Number Concentration . . . . . . . . . . . . . . . 9 2.1.2. Particle Number Size Distribution . . . . . . . . . . . . . . . . . 10 2.1.3. Total Concentration of Cloud Condensation Nuclei . . . . . . . . 15 2.2. Determination of the CCN hygroscopicity . . . . . . . . . . . . . . . . . 16 2.2.1. Köhler theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2. The hygroscopicity parameter k and the critical diameter dcrit . . 18 2.3. Determination of the Air Mass Origin . . . . . . . . . . . . . . . . . . . 20 2.3.1. The NAME Dispersion Model . . . . . . . . . . . . . . . . . . . 20 2.3.2. Potential Source Contribution Function . . . . . . . . . . . . . . 22 3. Results and Discussion 25 3.1. Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during Spring-Summer transition in May 2014 . . 25 3.1.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2. Overview of NCN, NCCN and PNSD data for the entire measurement period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.3. Identification of air mass origins and potential source regions . . . 32 3.1.4. PNSD of the three periods . . . . . . . . . . . . . . . . . . . . . 35 3.1.5. Critical diameter dcrit and hygroscopicity parameter k . . . . . . 38 3.1.6. Comparison of height resolved airborne and ground based PNSDs 41 3.2. Measurements of aerosol and CCN properties at the Princess Elisabeth Antarctica Research Station during three austral summers . . . . . . . . . 45 3.2.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2. Total Particle and CCN number concentrations and regional analysis of the NAME model footprints . . . . . . . . . . . . . . . . 50 3.2.3. PSCF results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.4. Hygroscopicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4. Summary, Conclusions and Outlook 65 A. Appendix 71 A.1. SS calibration of the CCNC . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.2. Error Analysis with Monte Carlo Simulation . . . . . . . . . . . . . . . . 73 B List of Figures vii C List of Tables viii Bibliography xiAtmospheric aerosol particles interact with solar and terrestrial radiation by absorption and scattering. Further, they have the potential to act as cloud condensation nuclei (CCN) and to form and modify the radiative properties of clouds and thus are an important component in the Earth’s climate system. An accurate knowledge about the aerosol particle and CCN properties is very important for accurate climate and radiation models. The objective of this thesis is the characterization of aerosol particles in regions that are key regulators of the Earth’s climate. The Arctic and the Antarctic are such regions. Hence, in the framework of this doctoral thesis two data sets were recorded, that help gaining further knowledge about the spring and summer time aerosol particles and CCN in the Arctic and Antarctic region. For both, the Arctic and the Antarctic aerosol population, the CCN and the total particle number concentration (NCCN, NCN), the particle number size distribution (PNSD) and the hygroscopicity parameter k were determined. The history of the measured air masses was explored using back trajectories and residence time analysis. For both examined regions, a strong influence of the air mass origin on the aerosol particle and CCN properties was found. The PNSDs measured in the Arctic were found to be mono-modal showing an accumulation mode which most likely contains well aged particles that have an Eurasian origin. Bi-modal PNSDs with an additional mode of smaller particles were found to originate from the Northern Pacific. In the Antarctic the air mass origin was found to significantly influence NCCN and NCN. With the application of the NAME dispersion model Antarctic continental background concentrations could be determined. With k values of 1 the Antarctic aerosol was found to be much more hygroscopic than the Arctic aerosol, for which a k of 0.19 was determined. Additional Arctic aircraft measurements show that ground based measurements are representative for the Arctic boundary layer. However particles above the boundary layer seem to be decoupled from lower layers and were believed to be advected from lower latitudes in different height layers and mixed down in the lower Arctic troposphere.:Contents List of Abbreviations iii List of Symbols v 1. Introduction 1 2. Experimental 9 2.1. Measured Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1. Total Particle Number Concentration . . . . . . . . . . . . . . . 9 2.1.2. Particle Number Size Distribution . . . . . . . . . . . . . . . . . 10 2.1.3. Total Concentration of Cloud Condensation Nuclei . . . . . . . . 15 2.2. Determination of the CCN hygroscopicity . . . . . . . . . . . . . . . . . 16 2.2.1. Köhler theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2. The hygroscopicity parameter k and the critical diameter dcrit . . 18 2.3. Determination of the Air Mass Origin . . . . . . . . . . . . . . . . . . . 20 2.3.1. The NAME Dispersion Model . . . . . . . . . . . . . . . . . . . 20 2.3.2. Potential Source Contribution Function . . . . . . . . . . . . . . 22 3. Results and Discussion 25 3.1. Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during Spring-Summer transition in May 2014 . . 25 3.1.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2. Overview of NCN, NCCN and PNSD data for the entire measurement period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.3. Identification of air mass origins and potential source regions . . . 32 3.1.4. PNSD of the three periods . . . . . . . . . . . . . . . . . . . . . 35 3.1.5. Critical diameter dcrit and hygroscopicity parameter k . . . . . . 38 3.1.6. Comparison of height resolved airborne and ground based PNSDs 41 3.2. Measurements of aerosol and CCN properties at the Princess Elisabeth Antarctica Research Station during three austral summers . . . . . . . . . 45 3.2.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2. Total Particle and CCN number concentrations and regional analysis of the NAME model footprints . . . . . . . . . . . . . . . . 50 3.2.3. PSCF results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.4. Hygroscopicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4. Summary, Conclusions and Outlook 65 A. Appendix 71 A.1. SS calibration of the CCNC . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.2. Error Analysis with Monte Carlo Simulation . . . . . . . . . . . . . . . . 73 B List of Figures vii C List of Tables viii Bibliography x

    Annual variability of ice-nucleating particle concentrations at different Arctic locations

    Get PDF
    Abstract. Number concentrations of ice-nucleating particles (NINP) in the Arctic were derived from ground-based filter samples. Examined samples had been collected in Alert (Nunavut, northern Canadian archipelago on Ellesmere Island), Utqiaġvik, formerly known as Barrow (Alaska), Ny-Ålesund (Svalbard), and at the Villum Research Station (VRS; northern Greenland). For the former two stations, examined filters span a full yearly cycle. For VRS, 10 weekly samples, mostly from different months of one year, were included. Samples from Ny-Ålesund were collected during the months from March until September of one year. At all four stations, highest concentrations were found in the summer months from roughly June to September. For those stations with sufficient data coverage, an annual cycle can be seen. The spectra of NINP observed at the highest temperatures, i.e., those obtained for summer months, showed the presence of INPs that nucleate ice up to −5 ∘C. Although the nature of these highly ice-active INPs could not be determined in this study, it often has been described in the literature that ice activity observed at such high temperatures originates from the presence of ice-active material of biogenic origin. Spectra observed at the lowest temperatures, i.e., those derived for winter months, were on the lower end of the respective values from the literature on Arctic INPs or INPs from midlatitude continental sites, to which a comparison is presented herein. An analysis concerning the origin of INPs that were ice active at high temperatures was carried out using back trajectories and satellite information. Both terrestrial locations in the Arctic and the adjacent sea were found to be possible source areas for highly active INPs

    The hemispheric contrast in cloud microphysical properties constrains aerosol forcing

    Get PDF
    The change in planetary albedo due to aerosol−cloud interactions during the industrial era is the leading source of uncertainty in inferring Earth’s climate sensitivity to increased greenhouse gases from the historical record. The variable that controls aerosol−cloud interactions in warm clouds is droplet number concentration. Global climate models demonstrate that the present-day hemispheric contrast in cloud droplet number concentration between the pristine Southern Hemisphere and the polluted Northern Hemisphere oceans can be used as a proxy for anthropogenically driven change in cloud droplet number concentration. Remotely sensed estimates constrain this change in droplet number concentration to be between 8 cm−3 and 24 cm−3. By extension, the radiative forcing since 1850 from aerosol−cloud interactions is constrained to be −1.2 W⋅m−2 to −0.6 W⋅m−2. The robustness of this constraint depends upon the assumption that pristine Southern Ocean droplet number concentration is a suitable proxy for preindustrial concentrations. Droplet number concentrations calculated from satellite data over the Southern Ocean are high in austral summer. Near Antarctica, they reach values typical of Northern Hemisphere polluted outflows. These concentrations are found to agree with several in situ datasets. In contrast, climate models show systematic underpredictions of cloud droplet number concentration across the Southern Ocean. Near Antarctica, where precipitation sinks of aerosol are small, the underestimation by climate models is particularly large. This motivates the need for detailed process studies of aerosol production and aerosol−cloud interactions in pristine environments. The hemispheric difference in satellite estimated cloud droplet number concentration implies preindustrial aerosol concentrations were higher than estimated by most models

    Physical Properties of Arctic and Antarctic Aerosol Particles and Cloud Condensation Nuclei

    Get PDF
    Aerosol Partikel interagieren mit solarer und terrestrischer Strahlung durch Absorption und Streuung. Zusätzlich bilden und modifizieren sie die Eigenschaften von Wolken da sie das Potential besitzen als Wolkenkondensationskeim (CCN) fungieren zu können und stellen somit eine wichtige Komponente im Klimasystem dar. Die Eigenschaften von Partikeln und CCN müssen genaustens bekannt sein um deren Einfluss in Klima- und Strahlungsmodellen akurat berücksichtigen zu können. Ziel dieser Arbeit ist die Charakterisierung der Partikeleigenschaften in Regionen, welche das Klima maßgeblich beeinflussen, wie die Arktis und die Antarktis. Im Rahmen dieser Arbeit wurden 2 Datensätze aufgenommen, welche helfen das Verständnis über Partikel und CCN im Frühjar und Sommer in der Arktis und Antarktis zu verbessern. Es wurden jeweils die Gesamt- und die CCN-Anzahlkonzentration (NCN, NCCN), die Anzahlgrößenverteilung (PNSD) und der Hygroskopizitätsparameter (k) der Partikel bestimmt. Die Herkunft der vermessenen Partikel wurde mit Rückwärtstrajektorien ermittelt sowie weitere Analysen bezüglich der Verweilzeiten durchgeführt. Beide Datensätze zeigen, dass eine starke Abhängigkeit der Partikel- und CCN-Eigenschaften vom Luftmassenursprung vorliegt. Zeigen arktische PNSDs nur eine Akkumulationsmode, konnte diese auf gealtertes Aerosol mit einem eurasischen Ursprung zurückgeführt werden. Kommt eine zweite Mode mit kleineren Partikeln hinzu, wurde der Nord-Pazifische Raum als Ursprung bestimmt. In der Antarktis wurde besonders für NCN und NCCN eine starke Abhängigkeit vom Luftmassenursprung gefunden. Dabei konnten mit der Anwendung des Dispersionsmodells NAME Antarktische Hintergrundkonzentrationen ermittelt werden. Weiterhin wurde gefunden, dass Antarktische Aerosolpartikel mit einem k von 1 hygroscopischer als das Arktische ist, für welches ein k von 0,19 bestimmt wurde. Zusätzlich durchgeführte Flugzeugmessungen über Tuktoyaktuk (Arktis) zeigen, dass die Messungen am Boden auch repräsentativ für die Grenzschicht sind. Die Schichten über der Grenzschicht scheinen jedoch von dieser entkoppelt zu sein und es wird vermutet, dass der Ursprung der Partikel in größeren Höhen in niedrigeren geographischen Breiten liegt.:Contents List of Abbreviations iii List of Symbols v 1. Introduction 1 2. Experimental 9 2.1. Measured Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1. Total Particle Number Concentration . . . . . . . . . . . . . . . 9 2.1.2. Particle Number Size Distribution . . . . . . . . . . . . . . . . . 10 2.1.3. Total Concentration of Cloud Condensation Nuclei . . . . . . . . 15 2.2. Determination of the CCN hygroscopicity . . . . . . . . . . . . . . . . . 16 2.2.1. Köhler theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2. The hygroscopicity parameter k and the critical diameter dcrit . . 18 2.3. Determination of the Air Mass Origin . . . . . . . . . . . . . . . . . . . 20 2.3.1. The NAME Dispersion Model . . . . . . . . . . . . . . . . . . . 20 2.3.2. Potential Source Contribution Function . . . . . . . . . . . . . . 22 3. Results and Discussion 25 3.1. Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during Spring-Summer transition in May 2014 . . 25 3.1.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2. Overview of NCN, NCCN and PNSD data for the entire measurement period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.3. Identification of air mass origins and potential source regions . . . 32 3.1.4. PNSD of the three periods . . . . . . . . . . . . . . . . . . . . . 35 3.1.5. Critical diameter dcrit and hygroscopicity parameter k . . . . . . 38 3.1.6. Comparison of height resolved airborne and ground based PNSDs 41 3.2. Measurements of aerosol and CCN properties at the Princess Elisabeth Antarctica Research Station during three austral summers . . . . . . . . . 45 3.2.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2. Total Particle and CCN number concentrations and regional analysis of the NAME model footprints . . . . . . . . . . . . . . . . 50 3.2.3. PSCF results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.4. Hygroscopicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4. Summary, Conclusions and Outlook 65 A. Appendix 71 A.1. SS calibration of the CCNC . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.2. Error Analysis with Monte Carlo Simulation . . . . . . . . . . . . . . . . 73 B List of Figures vii C List of Tables viii Bibliography xiAtmospheric aerosol particles interact with solar and terrestrial radiation by absorption and scattering. Further, they have the potential to act as cloud condensation nuclei (CCN) and to form and modify the radiative properties of clouds and thus are an important component in the Earth’s climate system. An accurate knowledge about the aerosol particle and CCN properties is very important for accurate climate and radiation models. The objective of this thesis is the characterization of aerosol particles in regions that are key regulators of the Earth’s climate. The Arctic and the Antarctic are such regions. Hence, in the framework of this doctoral thesis two data sets were recorded, that help gaining further knowledge about the spring and summer time aerosol particles and CCN in the Arctic and Antarctic region. For both, the Arctic and the Antarctic aerosol population, the CCN and the total particle number concentration (NCCN, NCN), the particle number size distribution (PNSD) and the hygroscopicity parameter k were determined. The history of the measured air masses was explored using back trajectories and residence time analysis. For both examined regions, a strong influence of the air mass origin on the aerosol particle and CCN properties was found. The PNSDs measured in the Arctic were found to be mono-modal showing an accumulation mode which most likely contains well aged particles that have an Eurasian origin. Bi-modal PNSDs with an additional mode of smaller particles were found to originate from the Northern Pacific. In the Antarctic the air mass origin was found to significantly influence NCCN and NCN. With the application of the NAME dispersion model Antarctic continental background concentrations could be determined. With k values of 1 the Antarctic aerosol was found to be much more hygroscopic than the Arctic aerosol, for which a k of 0.19 was determined. Additional Arctic aircraft measurements show that ground based measurements are representative for the Arctic boundary layer. However particles above the boundary layer seem to be decoupled from lower layers and were believed to be advected from lower latitudes in different height layers and mixed down in the lower Arctic troposphere.:Contents List of Abbreviations iii List of Symbols v 1. Introduction 1 2. Experimental 9 2.1. Measured Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1. Total Particle Number Concentration . . . . . . . . . . . . . . . 9 2.1.2. Particle Number Size Distribution . . . . . . . . . . . . . . . . . 10 2.1.3. Total Concentration of Cloud Condensation Nuclei . . . . . . . . 15 2.2. Determination of the CCN hygroscopicity . . . . . . . . . . . . . . . . . 16 2.2.1. Köhler theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2. The hygroscopicity parameter k and the critical diameter dcrit . . 18 2.3. Determination of the Air Mass Origin . . . . . . . . . . . . . . . . . . . 20 2.3.1. The NAME Dispersion Model . . . . . . . . . . . . . . . . . . . 20 2.3.2. Potential Source Contribution Function . . . . . . . . . . . . . . 22 3. Results and Discussion 25 3.1. Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during Spring-Summer transition in May 2014 . . 25 3.1.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2. Overview of NCN, NCCN and PNSD data for the entire measurement period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.3. Identification of air mass origins and potential source regions . . . 32 3.1.4. PNSD of the three periods . . . . . . . . . . . . . . . . . . . . . 35 3.1.5. Critical diameter dcrit and hygroscopicity parameter k . . . . . . 38 3.1.6. Comparison of height resolved airborne and ground based PNSDs 41 3.2. Measurements of aerosol and CCN properties at the Princess Elisabeth Antarctica Research Station during three austral summers . . . . . . . . . 45 3.2.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2. Total Particle and CCN number concentrations and regional analysis of the NAME model footprints . . . . . . . . . . . . . . . . 50 3.2.3. PSCF results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.4. Hygroscopicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4. Summary, Conclusions and Outlook 65 A. Appendix 71 A.1. SS calibration of the CCNC . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.2. Error Analysis with Monte Carlo Simulation . . . . . . . . . . . . . . . . 73 B List of Figures vii C List of Tables viii Bibliography x

    Physical Properties of Arctic and Antarctic Aerosol Particles and Cloud Condensation Nuclei

    No full text
    Aerosol Partikel interagieren mit solarer und terrestrischer Strahlung durch Absorption und Streuung. Zusätzlich bilden und modifizieren sie die Eigenschaften von Wolken da sie das Potential besitzen als Wolkenkondensationskeim (CCN) fungieren zu können und stellen somit eine wichtige Komponente im Klimasystem dar. Die Eigenschaften von Partikeln und CCN müssen genaustens bekannt sein um deren Einfluss in Klima- und Strahlungsmodellen akurat berücksichtigen zu können. Ziel dieser Arbeit ist die Charakterisierung der Partikeleigenschaften in Regionen, welche das Klima maßgeblich beeinflussen, wie die Arktis und die Antarktis. Im Rahmen dieser Arbeit wurden 2 Datensätze aufgenommen, welche helfen das Verständnis über Partikel und CCN im Frühjar und Sommer in der Arktis und Antarktis zu verbessern. Es wurden jeweils die Gesamt- und die CCN-Anzahlkonzentration (NCN, NCCN), die Anzahlgrößenverteilung (PNSD) und der Hygroskopizitätsparameter (k) der Partikel bestimmt. Die Herkunft der vermessenen Partikel wurde mit Rückwärtstrajektorien ermittelt sowie weitere Analysen bezüglich der Verweilzeiten durchgeführt. Beide Datensätze zeigen, dass eine starke Abhängigkeit der Partikel- und CCN-Eigenschaften vom Luftmassenursprung vorliegt. Zeigen arktische PNSDs nur eine Akkumulationsmode, konnte diese auf gealtertes Aerosol mit einem eurasischen Ursprung zurückgeführt werden. Kommt eine zweite Mode mit kleineren Partikeln hinzu, wurde der Nord-Pazifische Raum als Ursprung bestimmt. In der Antarktis wurde besonders für NCN und NCCN eine starke Abhängigkeit vom Luftmassenursprung gefunden. Dabei konnten mit der Anwendung des Dispersionsmodells NAME Antarktische Hintergrundkonzentrationen ermittelt werden. Weiterhin wurde gefunden, dass Antarktische Aerosolpartikel mit einem k von 1 hygroscopischer als das Arktische ist, für welches ein k von 0,19 bestimmt wurde. Zusätzlich durchgeführte Flugzeugmessungen über Tuktoyaktuk (Arktis) zeigen, dass die Messungen am Boden auch repräsentativ für die Grenzschicht sind. Die Schichten über der Grenzschicht scheinen jedoch von dieser entkoppelt zu sein und es wird vermutet, dass der Ursprung der Partikel in größeren Höhen in niedrigeren geographischen Breiten liegt.:Contents List of Abbreviations iii List of Symbols v 1. Introduction 1 2. Experimental 9 2.1. Measured Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1. Total Particle Number Concentration . . . . . . . . . . . . . . . 9 2.1.2. Particle Number Size Distribution . . . . . . . . . . . . . . . . . 10 2.1.3. Total Concentration of Cloud Condensation Nuclei . . . . . . . . 15 2.2. Determination of the CCN hygroscopicity . . . . . . . . . . . . . . . . . 16 2.2.1. Köhler theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2. The hygroscopicity parameter k and the critical diameter dcrit . . 18 2.3. Determination of the Air Mass Origin . . . . . . . . . . . . . . . . . . . 20 2.3.1. The NAME Dispersion Model . . . . . . . . . . . . . . . . . . . 20 2.3.2. Potential Source Contribution Function . . . . . . . . . . . . . . 22 3. Results and Discussion 25 3.1. Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during Spring-Summer transition in May 2014 . . 25 3.1.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2. Overview of NCN, NCCN and PNSD data for the entire measurement period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.3. Identification of air mass origins and potential source regions . . . 32 3.1.4. PNSD of the three periods . . . . . . . . . . . . . . . . . . . . . 35 3.1.5. Critical diameter dcrit and hygroscopicity parameter k . . . . . . 38 3.1.6. Comparison of height resolved airborne and ground based PNSDs 41 3.2. Measurements of aerosol and CCN properties at the Princess Elisabeth Antarctica Research Station during three austral summers . . . . . . . . . 45 3.2.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2. Total Particle and CCN number concentrations and regional analysis of the NAME model footprints . . . . . . . . . . . . . . . . 50 3.2.3. PSCF results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.4. Hygroscopicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4. Summary, Conclusions and Outlook 65 A. Appendix 71 A.1. SS calibration of the CCNC . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.2. Error Analysis with Monte Carlo Simulation . . . . . . . . . . . . . . . . 73 B List of Figures vii C List of Tables viii Bibliography xiAtmospheric aerosol particles interact with solar and terrestrial radiation by absorption and scattering. Further, they have the potential to act as cloud condensation nuclei (CCN) and to form and modify the radiative properties of clouds and thus are an important component in the Earth’s climate system. An accurate knowledge about the aerosol particle and CCN properties is very important for accurate climate and radiation models. The objective of this thesis is the characterization of aerosol particles in regions that are key regulators of the Earth’s climate. The Arctic and the Antarctic are such regions. Hence, in the framework of this doctoral thesis two data sets were recorded, that help gaining further knowledge about the spring and summer time aerosol particles and CCN in the Arctic and Antarctic region. For both, the Arctic and the Antarctic aerosol population, the CCN and the total particle number concentration (NCCN, NCN), the particle number size distribution (PNSD) and the hygroscopicity parameter k were determined. The history of the measured air masses was explored using back trajectories and residence time analysis. For both examined regions, a strong influence of the air mass origin on the aerosol particle and CCN properties was found. The PNSDs measured in the Arctic were found to be mono-modal showing an accumulation mode which most likely contains well aged particles that have an Eurasian origin. Bi-modal PNSDs with an additional mode of smaller particles were found to originate from the Northern Pacific. In the Antarctic the air mass origin was found to significantly influence NCCN and NCN. With the application of the NAME dispersion model Antarctic continental background concentrations could be determined. With k values of 1 the Antarctic aerosol was found to be much more hygroscopic than the Arctic aerosol, for which a k of 0.19 was determined. Additional Arctic aircraft measurements show that ground based measurements are representative for the Arctic boundary layer. However particles above the boundary layer seem to be decoupled from lower layers and were believed to be advected from lower latitudes in different height layers and mixed down in the lower Arctic troposphere.:Contents List of Abbreviations iii List of Symbols v 1. Introduction 1 2. Experimental 9 2.1. Measured Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1. Total Particle Number Concentration . . . . . . . . . . . . . . . 9 2.1.2. Particle Number Size Distribution . . . . . . . . . . . . . . . . . 10 2.1.3. Total Concentration of Cloud Condensation Nuclei . . . . . . . . 15 2.2. Determination of the CCN hygroscopicity . . . . . . . . . . . . . . . . . 16 2.2.1. Köhler theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2. The hygroscopicity parameter k and the critical diameter dcrit . . 18 2.3. Determination of the Air Mass Origin . . . . . . . . . . . . . . . . . . . 20 2.3.1. The NAME Dispersion Model . . . . . . . . . . . . . . . . . . . 20 2.3.2. Potential Source Contribution Function . . . . . . . . . . . . . . 22 3. Results and Discussion 25 3.1. Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during Spring-Summer transition in May 2014 . . 25 3.1.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2. Overview of NCN, NCCN and PNSD data for the entire measurement period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.3. Identification of air mass origins and potential source regions . . . 32 3.1.4. PNSD of the three periods . . . . . . . . . . . . . . . . . . . . . 35 3.1.5. Critical diameter dcrit and hygroscopicity parameter k . . . . . . 38 3.1.6. Comparison of height resolved airborne and ground based PNSDs 41 3.2. Measurements of aerosol and CCN properties at the Princess Elisabeth Antarctica Research Station during three austral summers . . . . . . . . . 45 3.2.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2. Total Particle and CCN number concentrations and regional analysis of the NAME model footprints . . . . . . . . . . . . . . . . 50 3.2.3. PSCF results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.4. Hygroscopicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4. Summary, Conclusions and Outlook 65 A. Appendix 71 A.1. SS calibration of the CCNC . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.2. Error Analysis with Monte Carlo Simulation . . . . . . . . . . . . . . . . 73 B List of Figures vii C List of Tables viii Bibliography x

    Measurements of Cloud Condensation Nuclei (CCN) concentrations in the Arctic during Polarstern cruise PS106

    No full text
    Onboard the RV Polarstern a Cloud Condensation Nucleus Counter (CCNc, CCN-100, DMT) was operated during cruise PS106.1 (PASCAL) and PS106.2 (SiPCA) from May 25 to July 16 2017. The measurements were performed in the polydisperse configuration with the CCNc cycling through six supersaturations (SS). The CCNc stayed for 10 min at each SS (0.1%, 0.15%, 0.2%, 0.3%, 0.5%, 1%). The CCN concentrations are averaged for every SS during a cycle and also normalized to standard temperature and pressure conditions (273.15 K and 1013.25 hPa). Ambient temperature and pressure are also provided in order to give the possibility to calculate ambient CCN concentrations
    corecore