110 research outputs found

    Flow Boiling and Condensation Experiment Flight Hardware Development

    Get PDF
    The Flow Boiling and Condensation Experiment (FBCE) to be manifested on the International Space Station (ISS) consists of a fluid system and the associated electronics to provide for conditioning the test fluid (normal-PerFluorohexane or nPFH-C6F14) to the proper thermodynamic state prior to entering a test module, which can be interchangeable based on the science objectives. Two separate test modules have been manufactured for the FBCE, the Flow Boiling Module (FBM), which investigates flow boiling for a subcooled liquid, saturated liquid, or two phase mixture, and the Condensation Module Heat Transfer (CM-HT), which investigates condensation of a flowing saturated or superheated vapor. The test fluid heating is accomplished using the Bulk Heater Module (BHM), which heats the fluid to various states based on the demands of the currently installed test module. ISS Internal Thermal Control System (ITCS) water is utilized to cool the test fluid prior to entering the circulation pump, and is also utilized for cooling for condensation in CM-HT, for cooling of a camera in FBM. An adjustable pressure bellows-type accumulator is used to set the pressure at the inlet of the test section, but does not provide active pressure control during testing. The flow of the test fluid is achieved using a gear pump controlled by a coriolis flow meter, which also provides the flow rate measurement. Flow rates for the ITCS water loops are measured and controlled using coriolis flow meters with directly controlled proportional valves. During execution of FBCE operations, the FBM is scheduled to collect data for three months before being exchanged with CM-HT for another three month data collection run. In this work, we present the development of the flight hardware, the associated challenges experienced during the development such as packaging flight system hardware, and the lessons learned in overcoming the encountered challenges

    Theoretical study of γ\gamma Doradus pulsations in pre-main sequence stars

    Full text link
    The question of the existence of pre-main sequence (PMS) γ\gamma~Doradus (γ\gamma~Dor) has been raised by the observations of young clusters such as NGC~884 hosting γ\gamma~Dor members. We have explored the properties of γ\gamma~Dor type pulsations in a grid of PMS models covering the mass range 1.2M<M<2.5M1.2 M_\odot < M_* < 2.5 M_\odot and we derive the theoretical instability strip (IS) for the PMS γ\gamma~Dor pulsators. We explore the possibility of distinguishing between PMS and MS γ\gamma~Dor by the behaviour of the period spacing of their high order gravitygravity-modes (gg-modes).Comment: 5 pages, 6 figures, Proc. HELAS IV Conference, Lanzarote, February 2010. Eds T. Roca Cort\'es, P. Pall\'e and S. Jim\'enez Reyes. Accepted in Astron. Nac

    Vibrational Instability of Metal-Poor Low-Mass Main-Sequence Stars

    Full text link
    We find that low-degree low-order g-modes become unstable in metal-poor low-mass stars due to the ε\varepsilon-mechanism of the pp-chain. Since the outer convection zone of these stars is limited only to the very outer layers, the uncertainty in the treatment of convection does not affect the result significantly. The decrease in metallicity leads to decrease in opacity and hence increase in luminosity of a star. This makes the star compact and results in decrease in the density contrast, which is favorable to the ε\varepsilon-mechanism instability. We find also instability for high order g-modes of metal-poor low-mass stars by the convective blocking mechanism. Since the effective temperature and the luminosity of metal-poor stars are significantly higher than those of Pop I stars, the stars showing γ\gamma Dor-type pulsation are substantially less massive than in the case of Pop I stars. We demonstrate that those modes are unstable for about 1M1\,M_\odot stars in the metal-poor case.Comment: 4 pages, 4 figures, To be published in Astrophysics and Space Science Proceedings series (ASSP). Proceedings of the "20th Stellar Pulsation Conference Series: Impact of new instrumentation and new insights in stellar pulsations", 5-9 September 2011, Granada, Spai

    Spectroscopic Pulsational Frequency Identification and Mode Determination of Gamma Doradus Star HD135825

    Full text link
    We present the mode identification of frequencies found in spectroscopic observations of the Gamma Doradus star HD135825. Four frequencies were successfully identified: 1.3150 +/- 0.0003 1/d; 0.2902 +/- 0.0004 1/d; 1.4045 +/- 0.0005 1/d; and 1.8829 +/- 0.0005 1/d. These correspond to (l, m) modes of (1,1), (2,-2), (4,0) and (1,1) respectively. Additional frequencies were found but they were below the signal-to-noise limit of the Fourier spectrum and not suitable for mode identification. The rotational axis inclination and vsini of the star were determined to be 87 degrees (nearly edge-on) and 39.7 km/s (moderate for Gamma Doradus stars) respectively. A simultaneous fit of these four modes to the line profile variations in the data gives a reduced chi square of 12.7. We confirm, based on the frequencies found, that HD135825 is a bona fide Gamma Doradus star.Comment: Accepted to MNRAS 2012 March

    Spectrum Analysis of Bright Kepler Gamma Doradus Candidate Stars

    Get PDF
    Ground-based spectroscopic follow-up observations of the pulsating stars observed by the Kepler satellite mission are needed for their asteroseismic modelling. We aim to derive the fundamental parameters for a sample of 26 Gamma Doradus candidate stars observed by the Kepler satellite mission to accomplish one of the required preconditions for their asteroseismic modelling and to compare our results with the types of pulsators expected from the existing light curve analysis. We use the spectrum synthesis method to derive the fundamental parameters like Teff, logg, [M/H], and vsini from newly obtained spectra and compute the spectral energy distribution from literature photometry to get an independent measure of Teff. We find that most of the derived Teff values agree with the values given in the Kepler Input Catalogue. According to their positions in the HR-diagram three stars are expected Gamma Dor stars, ten stars are expected Delta Sct stars, and seven stars are possibly Delta Sct stars at the hot border of the instability strip. Four stars in our sample are found to be spectroscopic binary candidates and four stars have very low metallicity where two show about solar C abundance. Six of the 10 stars located in the Delta Sct instability region of the HR-diagram show both Delta Sct and Gamma Dor-type oscillations in their light curves implying that Gamma Dor-like oscillations are much more common among the Delta Sct stars than predicted by theory. Moreover, seven stars showing periods in the Delta Sct and the Delta Sct-Gamma Dor range in their light curves are located in the HR-diagram left of the blue edge of the theoretical Delta Sct instability strip. The consistency of these findings with recent investigations based on high-quality Kepler data implies the need for a revision of the theoretical Gamma Dor and Delta Sct instability strips.Comment: 10 pages, 3 figures, 7 tables; accepted for publication in MNRA

    Constraining the properties of delta Scuti stars using spectroscopic eclipsing binary systems

    Full text link
    Many stars exhibit stellar pulsations, favoring them for asteroseismic analyses. Interpreting the oscillations requires some knowledge of the oscillation mode geometry (spherical degree, radial and azimuthal orders). The delta Scuti stars (1.5 - 2.5 M_sol) often show just one or few pulsation frequencies. Although this may promise a successful seismological analysis, we may not know enough about either the mode or the star to use the oscillation frequency to improve the determination of the stellar model, or probe the star's structure. For the observed frequencies to be used successfully as seismic probes of these objects, we need to concentrate on stars for which we can reduce the number of free parameters in the problem, such as binary systems or open clusters. We investigate how much our understanding of a delta Scuti star is improved when it is in a detached eclipsing binary system instead of being a single field star. We use singular value decomposition to explore the precision we expect in stellar parameters (mass, age and chemical composition) for both cases. We examine how the parameter uncertainties propagate to the luminosity - effective temperature diagram and determine when the effort of obtaining a new measurement is justified. We show that for the single star, a correct identification of the oscillation mode is necessary to produce strong constraints on the stellar model properties, while for the binary system the observations without the pulsation mode provide the same or better constraints on the stellar parameters. In the latter case, ...Comment: emulateapj 16 pages, accepted Ap

    On the relationship between the Delta Scuti and Gamma Doradus pulsators

    Full text link
    We searched for Delta Scuti-type pulsations amongst known and candidate Gamma Doradus stars. We acquired 270 h of observations and monitored a total of 26 stars. One target, HD 209295, turned out to be a member of both classes of pulsating star. We classify six of our targets as new bona fide Gamma Doradus stars, nine more as good Gamma Doradus candidates, and three as ellipsoidal variables. The remainder comprise one Delta Scuti star and five unexplained variables. We revise the blue border of the Gamma Doradus phenomenon towards cooler temperatures. This new blue edge extends from a temperature of about 7550 K on the ZAMS to 7400 K one magnitude above it. Five bona fide Gamma Doradus stars we observed are located inside the Delta Scuti instability strip, but none of them exhibited observable Delta Scuti pulsations. We therefore suggest that Gamma Doradus stars are less likely to be Delta Scuti pulsators compared to other normal stars in the same region of the lower instability strip. In addition, we show that there is a clear separation between the pulsation constants Q of Delta Scuti and Gamma Doradus stars. The Gamma Doradus stars known to date all have Q>0.23 d.Comment: 12 pages, 9 figures. MNRAS, in pres

    A spectroscopic study of southern (candidate) gamma Doradus stars. I. Time series analysis

    Get PDF
    We present results of a spectroscopic study of 37 southern (candidate) gamma Doradus stars based on echelle spectra. The observed spectra were cross-correlated with the standard template spectrum of an F0-type star for an easier detection of binary and intrinsic variations. We identified 15 objects as spectroscopic binaries, including 7 new ones, and another 3 objects are binary suspects. At least 12 objects show composite spectra. We could determine the orbital parameters for 9 binaries, of which 4 turn out to be ellipsoidal variables. For 6 binaries, we estimated the expected time-base of the orbital variations. Clear profile variations are observed for 17 objects, pointing towards stellar pulsation. For 8 of them, we have evidence that the main spectroscopic and photometric periods coincide. Our results, in combination with prior knowledge from the literature, lead to the classification of 10 objects as new bona-fide gamma Doradus stars, 1 object as new bona-fide delta Scuti star, and 8 objects as constant stars. Finally, we determined the projected rotational velocity with two independent methods. The resulting vsini values range from 3 to 135 km/s. For the bona-fide gamma Doradus stars, the majority has vsini below 60 km/s.Comment: 13 pages (+ 10 pages online material), 10 (+16) figures. Accepted for publication by A&

    Confirmation of simultaneous p and g mode excitation in HD 8801 and Gamma Peg from time-resolved multicolour photometry of six candidate "hybrid" pulsators

    Full text link
    We carried out a multi-colour time-series photometric study of six stars claimed as "hybrid" p and g mode pulsators in the literature. Gamma Peg was confirmed to show short-period oscillations of the Beta Cep type and simultaneous long-period pulsations typical of Slowly Pulsating B (SPB) stars. From the measured amplitude ratios in the Stromgren uvy passbands, the stronger of the two short period pulsation modes was identified as radial; the second is l=1. Three of the four SPB-type modes are most likely l=1 or 2. Comparison with theoretical model calculations suggests that Gamma Peg is either an 8.5 solar mass radial fundamental mode pulsator or a 9.6 solar mass first radial overtone pulsator. HD 8801 was corroborated as a "hybrid" Delta Sct Gamma Dor star; four pulsation modes of the Gamma Dor type were detected, and two modes of the Delta Sct type were confirmed. Two pulsational signals between the frequency domains of these two known classes of variables were confirmed and another was newly detected. These are either previously unknown types of pulsation, or do not originate from HD 8801. The O-type star HD 13745 showed small-amplitude slow variability on a time scale of 3.2 days. This object may be related to the suspected new type of supergiant SPB stars, but a rotational origin of its light variations cannot be ruled out at this point. 53 Psc is an SPB star for which two pulsation frequencies were determined and identified with low spherical degree. The behaviour of 53 Ari and Iota Her is consistent with non-variability during our observations, and we could not confirm light variations of the comparison star 34 Psc previously suspected. The use of signal-to-noise criteria in the analysis of data sets with strong aliasing is critically discussed.Comment: 14 pages, 10 figures, accepted by MNRA

    CoRoT\,102699796, the first metal-poor Herbig Ae pulsator: a hybrid δ\delta Sct-γ\gamma Dor variable?

    Full text link
    We present the analysis of the time series observations of CoRoT\,102699796 obtained by the CoRoT satellite that show the presence of five independent oscillation frequencies in the range 3.6-5 c/d. Using spectra acquired with FLAMES@VLT, we derive the following stellar parameters: spectral type F1V, Teff_{\rm eff}=7000±\pm200 K, log(g)=3.8±0.43.8\pm0.4, [M/H]=1.1±0.2-1.1\pm0.2, vvsinii=50±550\pm5 km/s, L/L_{\odot}=2111+21^{+21}_{-11}. Thus, for the first time we report the existence of a metal poor, intermediate-mass PMS pulsating star. Ground-based and satellite data are used to derive the spectral energy distribution of CoRoT\,102699796 extending from the optical to mid-infrared wavelengths. The SED shows a significant IR excess at wavelengths greater than 5μ\sim5 \mu. We conclude that CoRoT\,102699796 is a young Herbig Ae (F1Ve) star with a transitional disk, likely associated to the HII region [FT96]213.1-2.2. The pulsation frequencies have been interpreted in the light of the non-radial pulsation theory, using the LOSC code in conjunction with static and rotational evolutionary tracks. A minimization algorithm was used to find the best-fit model with M=1.84 M_{\odot}, Teff_{\rm eff}=6900 K which imply an isochronal age of t\sim2.5 Myr. This result is based on the interpretation of the detected frequencies as gg-modes of low-moderate nn-value. To our knowledge, this is the first time that such modes are identified in a intermediate-mass PMS pulsating star. Since CoRoT\,102699796 lies in the region of the HR diagram where the δ\delta Sct and γ\gamma Dor instability strips intersect, we argue that the observed pulsation characteristics are intermediate between these classes of variables, i.e. CoRoT\,102699796 is likely the first PMS hybrid γ\gamma Dor-δ\delta Sct pulsator ever studied.Comment: 13 pages, 7 figures. Accepted for publication in Monthly Notices of the RA
    corecore