1,409 research outputs found

    Genetic and biochemical characterization of an acquired subgroup B3 metallo-β-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia

    Get PDF
    Three clinical Pseudomonas aeruginosa isolates (WCH2677, WCH2813, and WCH2837) isolated from the Women's and Children's Hospital, Adelaide, Australia, produced a metallo-β-lactamase (MBL)-positive Etest result. All isolates were PCR negative for known MBL genes. A gene bank was created, and an MBL gene, designated bla, was cloned and fully characterized. The encoded enzyme, AIM-1, is a group B3 MBL that has the highest level of identity to THIN-B and L1. It is chromosomal and flanked by two copies (one intact and one truncated) of an ISCR element, ISCR15. Southern hybridization studies indicated the movement of both ISCR15 and bla within the three different clinical isolates. AIM-1 hydrolyzes most β-lactams, with the exception of aztreonam and, to a lesser extent, ceftazidime; however, it possesses significantly higher k values for cefepime and carbapenems than most other MBLs. AIM-1 was the first mobile group B3 enzyme detected and signals further problems for already beleaguered antimicrobial regimes to treat serious P. aeruginosa and other Gram-negative infections

    Detecting the Companions and Ellipsoidal Variations of RS CVn Primaries: II. omicron Draconis, a Candidate for Recent Low-Mass Companion Ingestion

    Get PDF
    To measure the stellar and orbital properties of the metal-poor RS CVn binary o Draconis (o Dra), we directly detect the companion using interferometric observations obtained with the Michigan InfraRed Combiner at Georgia State University's Center for High Angular Resolution Astronomy (CHARA) Array. The H-band flux ratio between the primary and secondary stars is the highest confirmed flux ratio (370 +/- 40) observed with long-baseline optical interferometry. These detections are combined with radial velocity data of both the primary and secondary stars, including new data obtained with the Tillinghast Reflector Echelle Spectrograph on the Tillinghast Reflector at the Fred Lawrence Whipple Observatory and the 2-m Tennessee State University Automated Spectroscopic Telescope at Fairborn Observatory. We determine an orbit from which we find model-independent masses and ages of the components (M_A = 1.35 +\- 0.05 M_Sun, M_B = 0.99 +\- 0.02 M_Sun, system age = 3.0 -\+ 0.5 Gyr). An average of a 23-year light curve of o Dra from the Tennessee State University Automated Photometric Telescope folded over the orbital period newly reveals eclipses and the quasi-sinusoidal signature of ellipsoidal variations. The modeled light curve for our system's stellar and orbital parameters confirm these ellipsoidal variations due to the primary star partially filling its Roche lobe potential, suggesting most of the photometric variations are not due to stellar activity (starspots). Measuring gravity darkening from the average light curve gives a best-fit of beta = 0.07 +\- 0.03, a value consistent with conventional theory for convective envelope stars. The primary star also exhibits an anomalously short rotation period, which, when taken with other system parameters, suggests the star likely engulfed a low-mass companion that had recently spun-up the star.Comment: 14 pages, 13 figures, Accepted to Ap

    The consumption of protein-rich foods in older adults: An exploratory focus group study

    Get PDF
    Objective: Many older adults consume inadequate protein for their needs. This study explored the factors associated with the consumption of high-protein foods in older adults. Methods: Participants over the age of 65 years (n = 28) took part in 1 of 4 focus group discussions on meat, fish, eggs, dairy products, nuts, and pulses. Discussions were audio taped, transcribed, and analyzed using thematic analysis. Results: Numerous and various reasons for the consumption and non-consumption of high-protein foods were reported. Many of these reasons result from reductions in chemosensory, dental and physical abilities, and changes in living situation in the older population, and have impact specifically on high-protein foods because of their often hard, perishable and need-to-be-cooked nature, and high cost. Conclusions and Implications: Further work is required to establish the importance of each of thesereasons in relation to protein intakes, to prioritize those of likely greatest impact for increasing intakes. © 2013 Society for Nutrition Education and Behavior

    Detecting the Companions and Ellipsoidal Variations of RS CVn Primaries: I. sigma Geminorum

    Get PDF
    To measure the properties of both components of the RS CVn binary sigma Geminorum (sigma Gem), we directly detect the faint companion, measure the orbit, obtain model-independent masses and evolutionary histories, detect ellipsoidal variations of the primary caused by the gravity of the companion, and measure gravity darkening. We detect the companion with interferometric observations obtained with the Michigan InfraRed Combiner (MIRC) at Georgia State University's Center for High Angular Resolution Astronomy (CHARA) Array with a primary-to-secondary H-band flux ratio of 270+/-70. A radial velocity curve of the companion was obtained with spectra from the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5-m Tillinghast Reflector at Fred Lawrence Whipple Observatory (FLWO). We additionally use new observations from the Tennessee State University Automated Spectroscopic and Photometric Telescopes (AST and APT, respectively). From our orbit, we determine model-independent masses of the components (M_1 = 1.28 +/- 0.07 M_Sun, M_2 = 0.73 +/- 0.03 M_Sun), and estimate a system age of 5 -/+ 1 Gyr. An average of the 27-year APT light curve of sigma Gem folded over the orbital period (P = 19.6027 +/- 0.0005 days) reveals a quasi-sinusoidal signature, which has previously been attributed to active longitudes 180 deg apart on the surface of sigma Gem. With the component masses, diameters, and orbit, we find that the predicted light curve for ellipsoidal variations due to the primary star partially filling its Roche lobe potential matches well with the observed average light curve, offering a compelling alternative explanation to the active longitudes hypothesis. Measuring gravity darkening from the light curve gives beta < 0.1, a value slightly lower than that expected from recent theory.Comment: Accepted to ApJ, 11 pages, 6 figures, 8 table

    The Extended Star Formation History of the Andromeda Spheroid at 35 Kpc on the Minor Axis

    Get PDF
    Using the HST ACS, we have obtained deep optical images reaching well below the oldest main sequence turnoff in fields on the southeast minor-axis of the Andromeda Galaxy, 35 kpc from the nucleus. These data probe the star formation history in the extended halo of Andromeda -- that region beyond 30 kpc that appears both chemically and morphologically distinct from the metal-rich, highly-disturbed inner spheroid. The present data, together with our previous data for fields at 11 and 21 kpc, do not show a simple trend toward older ages and lower metallicities, as one might expect for populations further removed from the obvious disturbances of the inner spheroid. Specifically, the mean ages and [Fe/H] values at 11 kpc, 21 kpc, and 35 kpc are 9.7 Gyr and -0.65, 11.0 Gyr and -0.87, and 10.5 Gyr and -0.98, respectively. In the best-fit model of the 35 kpc population, one third of the stars are younger than 10 Gyr, while only ~10% of the stars are truly ancient and metal-poor. The extended halo thus exhibits clear evidence of its hierarchical assembly, and the contribution from any classical halo formed via early monolithic collapse must be small.Comment: Accepted for publication in The Astrophysical Journal Letters. 4 pages, latex, 2 color figure

    EXPRES. II. Searching for Planets Around Active Stars: A Case Study of HD 101501

    Full text link
    By controlling instrumental errors to below 10 cm/s, the EXtreme PREcision Spectrograph (EXPRES) allows for a more insightful study of photospheric velocities that can mask weak Keplerian signals. Gaussian Processes (GP) have become a standard tool for modeling correlated noise in radial velocity datasets. While GPs are constrained and motivated by physical properties of the star, in some cases they are still flexible enough to absorb unresolved Keplerian signals. We apply GP regression to EXPRES radial velocity measurements of the 3.5 Gyr old chromospherically active Sun-like star, HD 101501. We obtain tight constraints on the stellar rotation period and the evolution of spot distributions using 28 seasons of ground-based photometry, as well as recent TESSTESS data. Light curve inversion was carried out on both photometry datasets to reveal the spot distribution and spot evolution timescales on the star. We find that the >5> 5 m/s rms radial velocity variations in HD 101501 are well-modeled with a GP stellar activity model without planets, yielding a residual rms scatter of 45 cm/s. We carry out simulations, injecting and recovering signals with the GP framework, to demonstrate that high-cadence observations are required to use GPs most efficiently to detect low-mass planets around active stars like HD 101501. Sparse sampling prevents GPs from learning the correlated noise structure and can allow it to absorb prospective Keplerian signals. We quantify the moderate to high-cadence monitoring that provides the necessary information to disentangle photospheric features using GPs and to detect planets around active stars.Comment: 25 pages, 16 figures, accepted to A

    EXPRES IV: Two Additional Planets Orbiting ρ\rho Coronae Borealis Reveal Uncommon System Architecture

    Full text link
    Thousands of exoplanet detections have been made over the last twenty-five years using Doppler observations, transit photometry, direct imaging, and astrometry. Each of these methods is sensitive to different ranges of orbital separations and planetary radii (or masses). This makes it difficult to fully characterize exoplanet architectures and to place our solar system in context with the wealth of discoveries that have been made. Here, we use the EXtreme PREcision Spectrograph (EXPRES) to reveal planets in previously undetectable regions of the mass-period parameter space for the star ρ\rho Coronae Borealis. We add two new planets to the previously known system with one hot Jupiter in a 39-day orbit and a warm super-Neptune in a 102-day orbit. The new detections include a temperate Neptune planet (Msini20M{\sin{i}} \sim 20 M_\oplus) in a 281.4-day orbit and a hot super-Earth (Msini=3.7M{\sin{i}} = 3.7 M_\oplus) in a 12.95-day orbit. This result shows that details of planetary system architectures have been hiding just below our previous detection limits; this signals an exciting era for the next generation of extreme precision spectrographs.Comment: Accepted to AJ; 20 pages, 13 figures, 5 Table

    Vitamin B12 Deficiency Alters the Gut Microbiota in a Murine Model of Colitis

    Get PDF
    Purpose: Inflammatory bowel disease (IBD) refers to a spectrum of autoimmune diseases, which result in chronic intestinal inflammation. Previous findings suggest a role for diet, nutrition and dysbiosis of the gut microbiota in both the development and progression of the condition. Vitamin B12 is a key cofactor of methionine synthase and is produced solely by microbes. Previous work links increased levels of homocysteine, a substrate of methionine synthase, MetH, to IBD indicating a potential role for vitamin B12 deficiency in intestinal injury and inflammation. This study assessed the role of vitamin B12 in shaping the gut microbiota and determining responses to intestinal injury using a reproducible murine model of colitis. Methods: The effects of vitamin B12 supplementation and deficiency were assessed in vivo; 3-week-old post-weanling C57Bl/6 mice were divided into three dietary treatment groups: (1) sufficient vitamin B12 (50 mg/Kg), (2) deficient vitamin B12 (0 mg/Kg) and (3) supplemented vitamin B12 (200 mg/Kg) for a period of 4 weeks. Intestinal injury was induced with 2% dextran sodium sulphate (DSS) via drinking water for 5 days. The impact of varying levels of dietary vitamin B12 on gut microbiota composition was assessed using 16S rRNA gene sequencing from fecal samples collected at day 0 and day 28 of the dietary intervention, and 7 days following induction of colitis on day 38, when blood and colonic tissues were also collected. Results: No significant alterations were found in the gut microbiota composition of disease-free animals in response to dietary interventions. By contrast, after DSS-induced colitis, >30 genera were significantly altered in vitamin B12 deficient mice. Altered B12 levels produced no significant effect on composite disease-activity scores; however, administration of a B12 deficient diet resulted in reduced DSS-induced epithelial tissue damage. Conclusions: Vitamin B12 supplementation does not alter the gut microbiota composition under healthy conditions, but does contribute to differential microbial responses and intestinal dysbiosis following the induction of experimental colitis

    Contemporaneous Imaging Comparisons of the Spotted Giant sigma Geminorum Using Interferometric, Spectroscopic, and Photometric Data

    Get PDF
    Nearby active stars with relatively rapid rotation and large starspot structures offer the opportunity to compare interferometric, spectroscopic, and photometric imaging techniques. In this paper, we image a spotted star with three different methods for the first time. The giant primary star of the RS Canum Venaticorum binary sigma. Geminorum (sigma Gem) was imaged for two epochs of interferometric, high-resolution spectroscopic, and photometric observations. The light curves from the reconstructions show good agreement with the observed light curves, supported by the longitudinally consistent spot features on the different maps. However, there is strong disagreement in the spot latitudes across the methods.Peer reviewe
    corecore