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Three clinical Pseudomonas aeruginosa isolates (WCH2677, WCH2813, and WCH2837) isolated from the Women’s and Chil-
dren’s Hospital, Adelaide, Australia, produced a metallo-�-lactamase (MBL)-positive Etest result. All isolates were PCR negative
for known MBL genes. A gene bank was created, and an MBL gene, designated blaAIM-1, was cloned and fully characterized. The
encoded enzyme, AIM-1, is a group B3 MBL that has the highest level of identity to THIN-B and L1. It is chromosomal and
flanked by two copies (one intact and one truncated) of an ISCR element, ISCR15. Southern hybridization studies indicated the
movement of both ISCR15 and blaAIM-1 within the three different clinical isolates. AIM-1 hydrolyzes most �-lactams, with the
exception of aztreonam and, to a lesser extent, ceftazidime; however, it possesses significantly higher kcat values for cefepime and
carbapenems than most other MBLs. AIM-1 was the first mobile group B3 enzyme detected and signals further problems for al-
ready beleaguered antimicrobial regimes to treat serious P. aeruginosa and other Gram-negative infections.

The continuing increase in antibiotic resistance in Gram-nega-
tive bacteria is of concern, not least because of the increasing

lack of therapeutic options available to treat infections caused
principally by Pseudomonas aeruginosa and Acinetobacter bau-
mannii (3, 17, 21). This phenomenon has been exacerbated by the
dissemination of metallo-�-lactamases (MBLs) that can confer
resistance to nearly all �-lactams, with the exception of aztreonam
(4, 5, 43).

Like many resistance mechanisms, MBLs can be encoded by
either genes ubiquitously carried on the chromosome or mobile
genes (39). The latter genes now include the following subgroups:
IMP (15), VIM (26), SPM-1 (36), GIM-1, SIM-1, KMH-1 (25),
DIM-1 (20), and the recently described NDM-1 (44). So far, they
all belong to MBL subgroup B1. MBL genes are often embedded in
class 1 integrons and are carried as gene cassettes. It has also been
shown that while many MBL genes are plasmid mediated, some
are carried on the chromosome and can be associated with Tn21-
like transposons or Tn402 transposons (30, 34). However, SPM-1
is not associated with a standard integron but is flanked by two
genetic elements, designated ISCR4 (18). ISCR elements are IS91-
like mobile elements and can potentially mobilize and duplicate
blaSPM-1 via rolling-circle replication (33, 37).

The B3 subgroup MBLs have hitherto been reported for envi-
ronmental bacteria, only some of which can cause opportunistic
infections. These include Stenotrophomonas maltophilia (L1) (42),
Janthinobacterium lividum (THIN-B) (23), Chryseobacterium me-
ningosepticum (GOB-1) (1), Legionella gormanii (FEZ-1) (2),
Caulobacter crescentus (CAU-1) (10), CAR-1 from Erwinia caro-
tovora (29), POM-1 (32), and the recently reported ISCR1-associ-
ated SMB-1 (38). The MBL genes carried by these environmental
bacteria encode subgroup B3 MBLs that are not closely related to
the mobile B1 members (43). They are often GC rich and 2 to 3
kDa larger than the B1 subgroup members, although, with the
exception of L1, which is a tetramer, they are all monomeric in
structure (29).

Here we describe the full characterization of a new subclass of
MBL, AIM-1 (Adelaide imipenemase), which was discovered in
three P. aeruginosa isolates from Australia. Furthermore, we also
demonstrate that a novel ISCR element, ISCR15, is implicated in
the movement of blaAIM-1.

(Preliminary data were presented at the 47th Interscience Con-
ference on Antimicrobial Agents and Chemotherapy [ICAAC],
Chicago, IL, 2007 [45].)

MATERIALS AND METHODS
Clinical cases. (i) Clinical case 1. Patient 1 was a healthy 18-year-old man
from the Northern Territory, Australia, with newly diagnosed acute my-
eloid leukemia and admitted to the Royal Adelaide Hospital in March
2002. One week after presentation, he received broad-spectrum empirical
antimicrobial therapy with intravenous ticarcillin-clavulanate and genta-
micin, which was later changed to meropenem and vancomycin. On day
26, a multiresistant P. aeruginosa strain (WCH2677, designated the index
isolate) was isolated from endotracheal aspirates, and the antimicrobial
therapy was changed to intravenous amikacin and ticarcillin-clavulanate.
The patient died on day 30 from acute respiratory distress syndrome and
multiorgan failure.

(ii) Clinical case 2. Patient 2 was a 59-year-old man with insulin-
dependent type 2 diabetes and end-stage renal failure and was admitted at
the same time as patient 1. Upon admission, he presented with necrotizing
fasciitis of the anterior abdominal wall and was admitted to the intensive
care unit (ICU), and empirical treatment with intravenous meropenem
and vancomycin was commenced. Antibiotic therapy was modified to
include intravenous amoxicillin, ciprofloxacin, and metronidazole. Su-
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perficial swabs of the wound taken on day 42 in the ICU identified a
methicillin-resistant Staphylococcus aureus (MRSA) isolate and a multire-
sistant P. aeruginosa isolate (WCH2813). The patient continued to im-
prove, and he was later discharged from the hospital on day 70.

(iii) Clinical case 3. Patient 3 was a 64-year-old woman with Strepto-
coccus bovis endocarditis involving her prosthetic mitral valve and was
admitted to the Royal Adelaide Hospital within 1 week of admission of
patient 1. Empirical treatment with intravenous vancomycin and genta-
micin was commenced. A skin swab from around her central line site grew
a multiresistant P. aeruginosa strain (WCH2837) but without clinical ev-
idence of any local or systemic infection. She recovered fully, without
further complications, and was discharged home on day 22.

P. aeruginosa clinical strains. Clinical isolates were identified by us-
ing the BD (Baltimore, MD) Phoenix automated microbiology system.

Susceptibility testing. Susceptibility testing was performed by using the
Phoenix 100 system (Becton Dickinson, Oxford, United Kingdom) and by
using Etest strips (bioMérieux, La Plane, France), and results were interpreted
according to European Committee on Antimicrobial Susceptibility Testing
breakpoints (http://www.eucast.org/clinical_breakpoints/).

Phenotypic and molecular detections of MBL. The Hodge test using
MacConkey agar, an imipenem-EDTA double-disc synergy test, and MBL
Etest strips (bioMérieux, La Plane, France) were used to screen for class B
�-lactamase production (40). In addition, the carbapenemase activities of
cell sonicates from broth cultures grown overnight were determined by
spectrophotometric assays, which were carried out as previously de-
scribed (6). The presence of known MBL genes (including blaVIM, blaIMP,
blaSPM-1, blaGIM-1, blaSIM-1, blaDIM-1, and blaNDM-1) was screened for by
PCR using primers designed for all known MBL subgroups and class 1
integron structures (20, 44). Characterized strains carrying known MBL
genes were used as positive controls.

DNA cloning and sequence analysis. Cloning experiments were per-
formed by using cloning vector pK18 (35). Restriction endonucleases
BamHI and Sau3AI and T4 ligase (Promega, Madison, WI) were used for
cloning. Transformation was carried out by using electroporation and
Escherichia coli TOP10 cells (Invitrogen Corp., Carlsbad, CA). The selec-
tion for transformants was performed on LB agar plates containing X-gal
(5-bromo-4-chloro-3-indolyl-�-D-galactopyranoside) (30 �g/ml), cefta-
zidime (8 �g/ml), and kanamycin (50 �g/ml). Recombinant plasmids
were recovered by using a QIAprep Spin miniprep kit (Qiagen, West
Sussex, United Kingdom). The plasmid containing the MBL gene was
designated pAIM-1 and contained an insert of 3.5 kb, and it was se-
quenced on both strands. The nucleotide sequences, deduced amino acid
sequences, and phylogenetic relationships were analyzed by using the La-
sergene software package (DNAStar, Madison, WI). The obtained se-
quences were compared to sequences available on the Internet (http:
//www.ebi.ac.uk/fasta33/).

Genomic DNA digestion and pulsed-field gel electrophoresis
(PFGE). The genomic DNA digestion of the clinical isolates was per-
formed at 37°C overnight with PstI alone, PstI plus HincII, HindIII,
BamHI, EcoRI, EcoRV, KpnI, or NdeI (Promega). The buffers were used
according to the manufacturer’s recommendations. Genomic DNA was
prepared and digested with the restriction enzymes SpeI (Roche Diagnos-
tics, Mannheim, Germany), I-CeuI (New England Biolabs, Beverly, MA),
and S1 (Invitrogen, Abingdon, United Kingdom), and DNA fragments
were separated as previously described (14).

Hybridization. Hybridization was performed in gel. Briefly, the gel
was dried for 5 h at 50°C and then rehydrated in double-distilled water for
5 min before 30-min incubations in denaturing solution (0.5 M NaOH,
1.5 M NaCl) and neutralizing solution (0.5 M Tris-HCl [pH 7.5], 1.5 M
NaCl) at room temperature were performed. The gel was then prehybrid-
ized at 65°C using prehybridization solution (20 ml) (6� SSC [1� SSC is
0.15 M NaCl plus 0.015 M sodium citrate], 0.1% [wt/vol] polyvinylpyr-
rolidone 400, 0.1% [wt/vol] Ficoll, 0.1% [wt/vol] bovine serum albumin
[BSA] [Cohn fraction V], 0.5% [wt/vol] SDS). The hybridization solution
was the same as the prehybridization solution apart from 150 �g/ml de-

natured calf thymus DNA, which was added at least 4 h before the addition
of the probe. The 32P-labeled probe was prepared by using the random
primer technique (Stratagene, La Jolla, CA), as previously described (13).
Gels were washed in 2% SSC followed by 0.1% SSC.

�-Lactamase purification and characterization. Cultures of E. coli
carrying pAIM-1 were grown overnight at 37°C in 4 liters of LB broth. A
periplasmic protein preparation (30 mM Tris [pH 8.0], as previously de-
scribed [41]) was obtained, thereby discarding cytoplasmic proteins and,
thus, 70% of E. coli proteins. This protein solution was treated with 30%
and 60% ammonium sulfate solutions to precipitate the proteins, which
were removed by centrifugation. The clarified supernatant was loaded
onto a Q-Sepharose column (1.5 by 12 cm with a 25-ml bed volume;
Amersham Pharmacia Biotech, Buckinghamshire, United Kingdom)
equilibrated by running 50 volumes of 30 mM Tris (pH 8.0) at 2 ml/min
at pH 7.5 through the column. The protein was eluted with a 0 to 500 mM
NaCl gradient in 30 mM Tris (pH 8.0) at 2 ml/min. The AIM-1 enzyme
eluted at �100 mM NaCl. Fractions possessing MBL activity were pooled
and loaded onto a Sephacryl S 300 gel filtration column (Amersham Phar-
macia Biotech, Buckinghamshire, United Kingdom) preequilibrated with
50 mM Tris HCl with 250 mM NaCl buffer at 0.045 ml/min. Fractions
showing the highest degree of carbapenemase activity against imipenem
were pooled. An Amicon centrifugal filter (Ultracel-50k, -10k; Millipore,
Carrigtwohill Co., Cork, Ireland) was used. Protein recovered in the fil-
trate and protein also retained in the filter were analyzed by sodium do-
decyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After visu-
alization with silver staining, the protein was deemed 99% pure by eye.
The determination of the experimental pI of AIM-1 was undertaken, as
previously described (19).

Determination of kinetic values. Purified �-lactamase was used to
determine the kinetic parameters kcat and Km. Reactions were performed
at 22°C with 1 ml of assay buffer (50 mM cacodylate and 100 �M zinc
chloride at pH 7.5) and carried out in duplicate. The standard deviation
varied from 3 to 8.5%. The rate of hydrolysis of each �-lactam was calcu-
lated for at least 10 different concentrations of substrate based on the
extinction coefficients for each substrate. The assays were performed with
a Lambda 35 UV-visible (UV-Vis) spectrophotometer (Perkin-Elmer,
Cambridge, United Kingdom), by observing the changes in absorption
resulting from the opening of the �-lactam ring at the specific wavelengths
for each of the 15 antimicrobial agents evaluated, as previously described
(24).

Nucleotide sequence accession number. The nucleotide sequence re-
ported in the present study has been assigned EMBL nucleotide accession
number AM998375.

RESULTS AND DISCUSSION
Relatedness and susceptibility profiles of the P. aeruginosa clin-
ical isolates. The susceptibility patterns of the three isolates
WCH2677, WCH2813, and WCH2837 were found to be nearly
identical (Table 1). Genomic DNA from WCH2677 was digested
with PstI alone and in combination with a variety of restriction
enzymes and revealed fragments of between 1.8 kb and 3.5 kb
when hybridized with the blaAIM-1 probe (results not shown). The
three P. aeruginosa isolates seem to be closely related clones, with
fewer than 3 bands of difference between them in the PFGE anal-
ysis (Fig. 1).

Phenotypic and molecular screening for MBLs. The results of
MBL screening tests were positive using the imipenem-EDTA
double-disc synergy test, MBL Etest strips, and determinations of
carbapenemase activities by spectrophotometry (data not shown)
(43). However, PCR analysis failed to detect previously known
MBL genes (blaVIM, blaIMP, blaSPM-1, blaGIM-1, blaKMH-1, blaSIM-1,
blaDIM-1, and blaNDM-1) as well as integrons.

Nucleotide and deduced amino acid sequences of blaAIM-1.
DNA from P. aeruginosa WCH2677, the index strain, was used to
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construct the DNA genomic library. One colony was isolated from
the genomic library, and E. coli TOP10 carrying the recombinant
had a ceftazidime MIC of 32 �g/ml and gave a positive Etest MBL
result (phantom zone). The 3.5-kb cloned fragment contained an
open reading frame (ORF) encoding a putative protein of 303
amino acids with a molecular mass of approximately 32 kDa. The
predicted pI of the protein is 6.0, and the experimental pI is 6.3
(data not shown). The protein is designated AIM-1 (Adelaide imi-
penemase). AIM-1 possesses a leader peptide with the probable
cleavage site occurring at position 22 between an alanine and a
serine, as was shown previously for L1 (42).

The amino acid sequence displayed the highest level of identity
with THIN-B (42.1%) (22), followed by L1 (31.4%) (42), and is

placed phylogenetically within the B3 subgroup cluster (29). The
predicted amino acid sequence showed that the active site of
AIM-1 has amino acid motifs that are broadly conserved through-
out the MBL family of enzymes (Fig. 2), i.e., the zinc binding motif
HXHXD (residues 116 to 120) and other residues involved in the
coordination of the two Zn2� ions (His196 and His263, according
to the BBL numbering system [11]). While AIM-1 shows reason-
able similarity to L1, it lacks the leucines at positions 5 and 8 and
the methionine at position 140 essential for polymerization into a
tetramer (Fig. 2) (12, 27). These data are consistent with the fact
that AIM-1 behaved as a monomeric protein throughout the gel
filtration process (data not shown).

Susceptibility profiles of E. coli (pAIM-1). The MICs of E. coli
TOP10 harboring the cloned AIM-1 gene (pAIM-1) are reported
in Table 1. pAIM-1 mediated resistance to penicillin, ampicillin,
piperacillin, cephalothin, cefoxitin, cefotaxime, cefuroxime, and
ceftazidime but did not confer resistance to the �-lactams aztreo-
nam, cefepime, imipenem, and meropenem. Most MBL-positive
P. aeruginosa strains (and the majority of Acinetobacter and Entero-
bacteriaceae strains) usually exhibit ceftazidime MICs of �100
�g/ml, which has become a signature for MBL detection, as the
carbapenem MICs vary significantly and are an unreliable indica-
tion of the presence of an MBL (43). Thus, it is worrisome that this
rule no longer holds true and that clinically significant MBLs
could be missed upon screening due to their lack of resistance to in
vitro ceftazidime, as seen in Enterobacteriaceae (8, 31).

Genetic context of blaAIM-1. Given that blaAIM-1 was not part of
a standard class 1 integron, the upstream and downstream se-
quences were determined. Upstream of blaAIM-1, there is an ORF,
which we have designated ISCR15A, which displays 93.7% nucle-
otide identity to ISCR5 (Fig. 3). Thus, unlike the majority of MBL
genes, blaAIM-1 was not found on a class 1 integron, but instead, it
is flanked by two ISCR elements (Fig. 1), rather like blaSPM-1 with
ISCR4 and blaOXA-45 with ISCR5. The spacing between the

TABLE 1 Antimicrobial susceptibility patterns of the three AIM-1-
producing isolates and E. coli TOP10 carrying blaAIM-1

Antimicrobial
agent

MIC (�g/ml) for isolate

WCH2677 WCH2713 WCH2837
E. coli
TOP10

E. coli TOP10
(pAIM-1)

Penicillin �256 �256 �256 24 �256
Ampicillin �256 �256 �256 12 �256
Piperacillin �256 �256 �256 0.5 12
Cephalothin �256 �256 �256 8 �256
Cefoxitin �256 �256 �256 4 8
Cefotaxime �256 �256 �256 0.094 8
Cefuroxime �256 �256 �256 8 12
Ceftazidime 32 16 16 1 32
Aztreonam 6 4 4 0.094 0.125
Cefepime 6 8 8 0.032 0.19
Imipenem 512 512 512 0.094 0.25
Meropenem 128 128 256 0.064 0.25
Ertapenem 512 512 512 0.25 1
Ciprofloxacin �32 �32 �32 0.004 0.004
Colistin 4 1.5 4 0.38 0.38

FIG 1 Evidence of movement of ISCR15 and blaAIM-1, and relatedness of AIM-1-positive strains. All panels a marker (lane M), WCH2677 (lane 1), WCH2813
(lane 2), and WCH2837 (lane 3). (A) SpeI digestion. (B) I-CeuI digestion. (C) S1 digestion and probing with blaAIM-1. (D) SpeI digestion and probing with
ISCR15.
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ISCR15A and blaAIM-1 ORFs is 270 bp (Fig. 3). Two hundred thirty-
six base pairs downstream from the 3= end of the ISCR15 element
is the signature origin of the insertion sequence (oriIS), 5=-GCGT
TTGAACTTCCTATACCC-3= (boldface type indicates consensus
sequence), which is strikingly similar to the oriIS sequences of
IS1294, ISCR1, ISCR3, and ISCR5. Immediately upstream of the
blaAIM-1 structural gene is a putative ribosomal binding site (RBS),
which is only a single base pair downstream of the oriIS site, indi-
cating that the promoter for blaAIM-1 lies within the 3= end of the
ISCR element (Fig. 3), which has been shown for other ISCR1 and
other antibiotic resistance genes. A truncated ISCR15-like se-
quence (designated ISCR15B�) of 185 bp was found downstream
of blaAIM-1, which has a nucleotide identity of 96.7% to ISCR5
(16). However, the mobility of blaAIM-1 is unlikely to be dependent
on ISCR15A, as this element is in the wrong orientation and
ISCR15B� is truncated despite being in the correct orientation.
However, the transposase of ISCR15A may still use the intact oriIS
site of the truncated ISCR15B element and thus may still be capa-
ble of mobilizing blaAIM-1 in trans (37). The oriIS of ISCR15A is
positioned just 13 bp upstream of the start codon of blaAIM-1.
Figure 3 shows a creditable RBS, but we cannot identify an appro-

priate �10 or �35 promoter. However, given the close proximity
of the start of blaAIM-1 to the end of ISCR15A (as depicted by the
oriIS), the promoter for blaAIM-1 expression must lie within the
transposase, as was demonstrated previously for ISCR1 and
downstream resistance genes (22, 33). blaAIM-1 and ISCR15 have
GC ratios of 69.6% and 68.8%, respectively, indicting that they are
likely derived from similar sources but also confirming their
nonpseudomonal origin, which normally has a GC ratio of 66%.

However, the Southern blot patterns using the blaAIM-1 and
ISCR15 probes were not identical. These two genes were used as
DNA probes to determine their genetic locations and examine any
differences between the strains. While WCH2677 and WCH2837
hybridized as a single band with the blaAIM-1 probe, WCH2813
gave a double band, indicating two copies of the MBL gene (Fig.
1). Since the ISCR15B� element is truncated, this evidence may
indicate that ISCR15A has mobilized both itself and blaAIM-1 in
WCH2813 but has replicated only itself in WCH2837. However,
the possibility exists that in strain WCH2837, ISCR15 could have
replicated both probes but that the second copy of blaAIM-1 may
have been deleted via a recombination event or, indeed, that the
genes have been mobilized by another mobile element resident in

FIG 2 Alignment of the amino acid sequence of AIM-1 with those of L1 and THIN-B. Differences in the amino acid sequences are noted by a single letter
representing the amino acid change within a particular sequence. Conserved residues and residues involved in the coordination of the zinc ions are denoted with
asterisks. Numbering is according to the updated BBL scheme (11).

FIG 3 Schematic representation of WCH2677 carrying blaAIM-1 (the arrows in the gene boxes indicate the direction of transcription). The sequence upstream
of blaAIM-1 and the oriIS for ISCR1, ISCR3, ISCR5, and IS1294 is highlighted. The putative ribosomal binding site is underlined, and the start codon of blaAIM-1

is indicated in boldface type. GenBank accession numbers are in parentheses.
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these isolates (37). Interestingly, when these same digests were
probed with ISCR15, only WCH2677 gave the single band, and
WCH2837 had an additional band, suggesting the movement of
ISCR15 within this isolate. The probing of genomic DNA with
SpeI, S1, and I-CeuI indicated that blaAIM-1 is carried on the chro-
mosome in all three strains (Fig. 1).

Functional properties of AIM-1. Analysis of purified AIM-1
by SDS-PAGE showed a single band corresponding to a molecular
mass of 32 kDa (data not shown). Under our experimental con-
ditions, AIM-1 readily hydrolyzed most compounds, with the ex-
ception of aztreonam and clavulanic acid (Table 2). Apart from
the values for ceftazidime, these values are broadly similar to those
of the L1 enzyme. The turnover rates for the carbapenems are
higher than those for most other MBLs due to the very high kcat

values of AIM-1. However, despite the high level of carbapenem
hydrolysis, the recombinant clone in E. coli could not confer re-
sistance to either carbapenem (MICs of 0.25 �g/ml for both imi-
penem and meropenem), which is consistent with other reports of
MBL genes such as blaVIM and blaIMP types (43).

AIM-1 is very different from other group B3 MBLs in that it is
able to be mobilized. The fact that ISCR elements are now impli-
cated in the mobilization of three MBL genes, blaSPM-1 (18),
blaNDM-1 (44), and now blaAIM-1, indicates that these elements will
contribute to the growing trend of resistance among clinically
important opportunistic pathogens. During the writing of the
manuscript, the MBL gene blaSMB-1 was reported to be adjacent to
the ISCR1 complex class 1 integron (38).
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