55 research outputs found
Communication on the World Wide Web: Designing an Effective Homepage
The purpose of this study was to examine the content and structural features of a World Wide Web homepage with the explicit goal of making recommendations for how a homepage should be designed
MicroRNA-155 is essential for the optimal proliferation and survival of plasmablast B cells.
A fast antibody response can be critical to contain rapidly dividing pathogens. This can be achieved by the expansion of antigen-specific B cells in response to T-cell help followed by differentiation into plasmablasts. MicroRNA-155 (miR-155) is required for optimal T-cell-dependent extrafollicular responses via regulation of PU.1, although the cellular processes underlying this defect are largely unknown. Here, we show that miR-155 regulates the early expansion of B-blasts and later on the survival and proliferation of plasmablasts in a B-cell-intrinsic manner, by tracking antigen-specific B cells in vivo since the onset of antigen stimulation. In agreement, comparative analysis of the transcriptome of miR-155-sufficient and miR-155-deficient plasmablasts at the peak of the response showed that the main processes regulated by miR-155 were DNA metabolic process, DNA replication, and cell cycle. Thus, miR-155 controls the extent of the extrafollicular response by regulating the survival and proliferation of B-blasts, plasmablasts and, consequently, antibody production
Order-by-disorder in the antiferromagnetic Ising model on an elastic triangular lattice
Geometrically frustrated materials have a ground-state degeneracy that may be
lifted by subtle effects, such as higher order interactions causing small
energetic preferences for ordered structures. Alternatively, ordering may
result from entropic differences between configurations in an effect termed
order-by-disorder. Motivated by recent experiments in a frustrated colloidal
system in which ordering is suspected to result from entropy, we consider in
this paper, the antiferromagnetic Ising model on a deformable triangular
lattice. We calculate the displacements exactly at the microscopic level, and
contrary to previous studies, find a partially disordered ground state of
randomly zigzagging stripes. Each such configuration is deformed differently
and thus has a unique phonon spectrum with distinct entropy, thus lifting the
degeneracy at finite temperature. Nonetheless, due to the free-energy barriers
between the ground-state configurations, the system falls into a disordered
glassy state.Comment: Accepted to PNA
Spiral spin-liquid and the emergence of a vortex-like state in MnScS
Spirals and helices are common motifs of long-range order in magnetic solids,
and they may also be organized into more complex emergent structures such as
magnetic skyrmions and vortices. A new type of spiral state, the spiral
spin-liquid, in which spins fluctuate collectively as spirals, has recently
been predicted to exist. Here, using neutron scattering techniques, we
experimentally prove the existence of a spiral spin-liquid in MnScS by
directly observing the 'spiral surface' - a continuous surface of spiral
propagation vectors in reciprocal space. We elucidate the multi-step ordering
behavior of the spiral spin-liquid, and discover a vortex-like triple-q phase
on application of a magnetic field. Our results prove the effectiveness of the
- Hamiltonian on the diamond lattice as a model for the spiral
spin-liquid state in MnScS, and also demonstrate a new way to realize a
magnetic vortex lattice.Comment: 10 pages, 11 figure
Experimental signatures of emergent quantum electrodynamics in PrHfO
In a quantum spin liquid, the magnetic moments of the constituent electron
spins evade classical long-range order to form an exotic state that is quantum
entangled and coherent over macroscopic length scales [1-2]. Such phases offer
promising perspectives for device applications in quantum information
technologies, and their study can reveal fundamentally novel physics in quantum
matter. Quantum spin ice is an appealing proposal of one such state, in which
the fundamental ground state properties and excitations are described by an
emergent U(1) lattice gauge theory [3-7]. This quantum-coherent regime has
quasiparticles that are predicted to behave like magnetic and electric
monopoles, along with a gauge boson playing the role of an artificial photon.
However, this emergent lattice quantum electrodynamics has proved elusive in
experiments. Here we report neutron scattering measurements of the rare-earth
pyrochlore magnet PrHfO that provide evidence for a quantum spin
ice ground state. We find a quasi-elastic structure factor with pinch points -
a signature of a classical spin ice - that are partially suppressed, as
expected in the quantum-coherent regime of the lattice field theory at finite
temperature. Our result allows an estimate for the speed of light associated
with magnetic photon excitations. We also reveal a continuum of inelastic spin
excitations, which resemble predictions for the fractionalized, topological
excitations of a quantum spin ice. Taken together, these two signatures suggest
that the low-energy physics of PrHfO can be described by emergent
quantum electrodynamics. If confirmed, the observation of a quantum spin ice
ground state would constitute a concrete example of a three-dimensional quantum
spin liquid - a topical state of matter which has so far mostly been explored
in lower dimensionalities.Comment: 15 pages, 3 figure
A novel Rac-dependent checkpoint in B cell development controls entry into the splenic white pulp and cell survival
Rac1 and Rac2 GTPases transduce signals from multiple receptors leading to cell migration, adhesion, proliferation, and survival. In the absence of Rac1 and Rac2, B cell development is arrested at an IgD− transitional B cell stage that we term transitional type 0 (T0). We show that T0 cells cannot enter the white pulp of the spleen until they mature into the T1 and T2 stages, and that this entry into the white pulp requires integrin and chemokine receptor signaling and is required for cell survival. In the absence of Rac1 and Rac2, transitional B cells are unable to migrate in response to chemokines and cannot enter the splenic white pulp. We propose that loss of Rac1 and Rac2 causes arrest at the T0 stage at least in part because transitional B cells need to migrate into the white pulp to receive survival signals. Finally, we show that in the absence of Syk, a kinase that transduces B cell antigen receptor signals required for positive selection, development is arrested at the same T0 stage, with transitional B cells excluded from the white pulp. Thus, these studies identify a novel developmental checkpoint that coincides with B cell positive selection
The miR-155-PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation.
A single microRNA (miRNA) can regulate the expression of many genes, though the level of repression imparted on any given target is generally low. How then is the selective pressure for a single miRNA/target interaction maintained across long evolutionary distances? We addressed this problem by disrupting in vivo the interaction between miR-155 and PU.1 in mice. Remarkably, this interaction proved to be key to promoting optimal T cell-dependent B cell responses, a previously unrecognized role for PU.1. Mechanistically, miR-155 inhibits PU.1 expression, leading to Pax5 down-regulation and the initiation of the plasma cell differentiation pathway. Additional PU.1 targets include a network of genes whose products are involved in adhesion, with direct links to B-T cell interactions. We conclude that the evolutionary adaptive selection of the miR-155-PU.1 interaction is exercised through the effectiveness of terminal B cell differentiation
A meta-analysis of the investment-uncertainty relationship
In this article we use meta-analysis to investigate the investment-uncertainty relationship. We focus on the direction and statistical significance of empirical estimates. Specifically, we estimate an ordered probit model and transform the estimated coefficients into marginal effects to reflect the changes in the probability of finding a significantly negative estimate, an insignificant estimate, or a significantly positive estimate. Exploratory data analysis shows that there is little empirical evidence for a positive relationship. The regression results suggest that the source of uncertainty, the level of data aggregation, the underlying model specification, and differences between short- and long-run effects are important sources of variation in study outcomes. These findings are, by and large, robust to the introduction of a trend variable to capture publication trends in the literature. The probability of finding a significantly negative relationship is higher in more recently published studies. JEL Classification: D21, D80, E22 1
- …