35 research outputs found
Biofunctionality with a twist: the importance of molecular organisation, handedness and configuration in synthetic biomaterial design
The building blocks of life – nucleotides, amino acids and saccharides – give rise to a large variety of components and make up the hierarchical structures found in Nature. Driven by chirality and non-covalent interactions, helical and highly organised structures are formed and the way in which they fold correlates with specific recognition and hence function. A great amount of effort is being put into mimicking these highly specialised biosystems as biomaterials for biomedical applications, ranging from drug discovery to regenerative medicine. However, as well as lacking the complexity found in Nature, their bio-activity is sometimes low and hierarchical ordering is missing or underdeveloped. Moreover, small differences in folding in natural biomolecules (e.g., caused by mutations) can have a catastrophic effect on the function they perform. In order to develop biomaterials that are more efficient in interacting with biomolecules, such as proteins, DNA and cells, we speculate that incorporating order and handedness into biomaterial design is necessary. In this review, we first focus on order and handedness found in Nature in peptides, nucleotides and saccharides, followed by selected examples of synthetic biomimetic systems based on these components that aim to capture some aspects of these ordered features. Computational simulations are very helpful in predicting atomic orientation and molecular organisation, and can provide invaluable information on how to further improve on biomaterial designs. In the last part of the review, a critical perspective is provided along with considerations that can be implemented in next-generation biomaterial designs
Оцінювання зволоженості гірських водозборів при математичному моделюванні дощових паводків
Розроблено процедуру оцінювання зволоженості водозбору, яка не потребує тривалого моделювання в оперативних умовах.Разработана процедура оценивания увлажненности водосбора, которая исключает необходимость продолжительного моделирования в оперативных условиях
The association between frailty and MRI features of cerebral small vessel disease.
Frailty is a common syndrome in older individuals that is associated with poor cognitive outcome. The underlying brain correlates of frailty are unclear. The aim of this study was to investigate the association between frailty and MRI features of cerebral small vessel disease in a group of non-demented older individuals. We included 170 participants who were classified as frail (n = 30), pre-frail (n = 85) or non-frail (n = 55). The association of frailty and white matter hyperintensity volume and shape features, lacunar infarcts and cerebral perfusion was investigated by regression analyses adjusted for age and sex. Frail and pre-frail participants were older, more often female and showed higher white matter hyperintensity volume (0.69 [95%-CI 0.08 to 1.31], p = 0.03 respectively 0.43 [95%-CI: 0.04 to 0.82], p = 0.03) compared to non-frail participants. Frail participants showed a non-significant trend, and pre-frail participants showed a more complex shape of white matter hyperintensities (concavity index: 0.04 [95%-CI: 0.03 to 0.08], p = 0.03; fractal dimensions: 0.07 [95%-CI: 0.00 to 0.15], p = 0.05) compared to non-frail participants. No between group differences were found in gray matter perfusion or in the presence of lacunar infarcts. In conclusion, increased white matter hyperintensity volume and a more complex white matter hyperintensity shape may be structural brain correlates of the frailty phenotype
Recommended from our members
The association between frailty and MRI features of cerebral small vessel disease
Abstract: Frailty is a common syndrome in older individuals that is associated with poor cognitive outcome. The underlying brain correlates of frailty are unclear. The aim of this study was to investigate the association between frailty and MRI features of cerebral small vessel disease in a group of non-demented older individuals. We included 170 participants who were classified as frail (n = 30), pre-frail (n = 85) or non-frail (n = 55). The association of frailty and white matter hyperintensity volume and shape features, lacunar infarcts and cerebral perfusion was investigated by regression analyses adjusted for age and sex. Frail and pre-frail participants were older, more often female and showed higher white matter hyperintensity volume (0.69 [95%-CI 0.08 to 1.31], p = 0.03 respectively 0.43 [95%-CI: 0.04 to 0.82], p = 0.03) compared to non-frail participants. Frail participants showed a non-significant trend, and pre-frail participants showed a more complex shape of white matter hyperintensities (concavity index: 0.04 [95%-CI: 0.03 to 0.08], p = 0.03; fractal dimensions: 0.07 [95%-CI: 0.00 to 0.15], p = 0.05) compared to non-frail participants. No between group differences were found in gray matter perfusion or in the presence of lacunar infarcts. In conclusion, increased white matter hyperintensity volume and a more complex white matter hyperintensity shape may be structural brain correlates of the frailty phenotype
From supramolecular polymers to multi-component biomaterials
The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications
Impact of Cerebral Microbleeds in Stroke Patients with Atrial Fibrillation
OBJECTIVES: Cerebral microbleeds are associated with the risks of ischemic stroke and intracranial hemorrhage, causing clinical dilemmas for antithrombotic treatment decisions. We aimed to evaluate the risks of intracranial hemorrhage and ischemic stroke associated with microbleeds in patients with atrial fibrillation treated with Vitamin K antagonists, direct oral anticoagulants, antiplatelets, and combination therapy (i.e. concurrent oral anticoagulant and antiplatelet) METHODS: We included patients with documented atrial fibrillation from the pooled individual patient data analysis by the Microbleeds International Collaborative Network. Risks of subsequent intracranial hemorrhage and ischemic stroke were compared between patients with and without microbleeds, stratified by antithrombotic use. RESULTS: A total of 7,839 patients were included. The presence of microbleeds was associated with an increased relative risk of intracranial hemorrhage (aHR 2.74, 95% confidence interval 1.76 - 4.26) and ischemic stroke (aHR 1.29, 95% confidence interval 1.04 - 1.59). For the entire cohort, the absolute incidence of ischemic stroke was higher than intracranial hemorrhage regardless of microbleeds burden. However, for the subgroup of patients taking combination of anticoagulant and antiplatelet therapy, the absolute risk of intracranial hemorrhage exceeded that of ischemic stroke in those with 2-4 microbleeds (25 vs 12 per 1,000 patient-years) and ≥11 microbleeds (94 vs 48 per 1,000 patient-years). INTERPRETATION: Patients with atrial fibrillation and high burden of microbleeds receiving combination therapy have a tendency of higher rate of intracranial hemorrhage than ischemic stroke, with potential for net harm. Further studies are needed to help optimize stroke preventive strategies in this high-risk group. This article is protected by copyright. All rights reserved
A supramolecular platform stabilizing growth factors
High concentrations of supplemented growth factors can cause oversaturation and adverse effects in in vitro and in vivo studies. Though, these supraphysiological concentrations are often required due to the low stability of growth factors. Here we demonstrate the stabilization of TGF-β1 and BMP4 using supramolecular polymers. Inspired by heparan sulfate, sulfonated peptides were presented on a supramolecular polymer to allow for non-covalent binding to growth factors in solution. After mixing with excipient molecules, both TGF-β1 and BMP4 were shown to have a prolonged half-life compared to the growth factors free in solution. Moreover, high cellular response was measured by a luciferase assay, indicating that TGF-β1 remained highly active upon binding to the supramolecular assembly. The results demonstrate that significant lower concentrations of growth factors can be used when supramolecular polymers bearing growth factor binding moieties are implemented. This approach can also be exploited in hydrogel systems to control growth factor release