56 research outputs found

    Hypoxia in the Holocene Baltic Sea : Comparing modern versus past intervals using sedimentary trace metals

    Get PDF
    Anthropogenic nutrient input has caused a rapid expansion of bottom water hypoxia in the Baltic Sea over the past century. Two earlier intervals of widespread hypoxia, coinciding with the Holocene Thermal Maximum (HTMHI; 8-4 ka before present; BP) and the Medieval Climate Anomaly (MCA(HI); similar to 1200-750 years BP), have been identified from Baltic Sea sediments. Here we present sediment records from two sites in the Baltic Sea, and compare the trace metal (As, Ba, Cd, Cu, Mo, Ni, Pb, Re, Sb, Tl, U, V, Zn) enrichments during all three hypoxic intervals. Distinct differences are observed between the intervals and the various elements, highlighting the much stronger perturbation of trace metal cycles during the modern hypoxic interval. Both Mo and U show a strong correlation with C-org and very high absolute concentrations, indicative of frequently euxinic bottom waters during hypoxic intervals. During the modern hypoxic interval (Modern(HI)) comparatively less Mo is sequestered relative to C-org than in earlier intervals. This suggests partial drawdown of the water column Mo inventory in the modern water column due to persistent euxinia and only partial replenishment of Mo through North Sea inflows. Molybdenum contents in modern sediments are likely also affected by the recent slowdown in input of Mo in association with deposition of Fe and Mn oxides. Strong enrichments of U in recent sediments confirm that the Modern(HI) is more intense than past intervals. These results suggest that U is a more reliable indicator for the intensity of bottom water deoxygenation in the Baltic Sea than Mo. Sedimentary Re enrichment commences under mildly reducing conditions, but this element is not further enriched under more reducing conditions. Enrichments of V are relatively minor for the MCA(HI) and Modern(HI), possibly due to strong reservoir effects on V in the water column, indicating that V is unreliable as an indicator for the intensity of bottom water hypoxia in this setting. Furthermore, Ba profiles are strongly influenced by post-depositional remobilization throughout the Holocene. The strong relationship between C-org and Ni, Tl and particularly Cu suggests that these trace metals can be used to reconstruct the C-org flux into the sediments. Profiles of As, Sb and Cd and especially Pb and Zn are strongly influenced by anthropogenic pollution.Peer reviewe

    Recovery from multi‐millennial natural coastal hypoxia in the Stockholm Archipelago, Baltic Sea, terminated by modern human activity

    Get PDF
    Enhanced nutrient input and warming have led to the development of low oxygen (hypoxia) in coastal waters globally. For many coastal areas, insight into redox conditions prior to human impact is lacking. Here, we reconstructed bottom water redox conditions and sea surface temperatures (SSTs) for the coastal Stockholm Archipelago over the past 3000 yr. Elevated sedimentary concentrations of molybdenum indicate (seasonal) hypoxia between 1000b.c.e.and 1500c.e. Biomarker-based (TEX86) SST reconstructions indicate that the recovery from hypoxia after 1500c.e.coincided with a period of significant cooling (similar to 2 degrees C), while human activity in the study area, deduced from trends in sedimentary lead and existing paleobotanical and archeological records, had significantly increased. A strong increase in sedimentary lead and zinc, related to more intense human activity in the 18(th)and 19(th)century, and the onset of modern warming precede the return of hypoxia in the Stockholm Archipelago. We conclude that climatic cooling played an important role in the recovery from natural hypoxia after 1500c.e., but that eutrophication and warming, related to modern human activity, led to the return of hypoxia in the 20(th)century. Our findings imply that ongoing global warming may exacerbate hypoxia in the coastal zone of the Baltic Sea

    Iron-Phosphorus Feedbacks Drive Multidecadal Oscillations in Baltic Sea Hypoxia

    Get PDF
    Hypoxia has occurred intermittently in the Baltic Sea since the establishment of brackish-water conditions at similar to 8,000 years B.P., principally as recurrent hypoxic events during the Holocene Thermal Maximum (HTM) and the Medieval Climate Anomaly (MCA). Sedimentary phosphorus release has been implicated as a key driver of these events, but previous paleoenvironmental reconstructions have lacked the sampling resolution to investigate feedbacks in past iron-phosphorus cycling on short timescales. Here we employ Laser Ablation (LA)-ICP-MS scanning of sediment cores to generate ultra-high resolution geochemical records of past hypoxic events. We show that in-phase multidecadal oscillations in hypoxia intensity and iron-phosphorus cycling occurred throughout these events. Using a box model, we demonstrate that such oscillations were likely driven by instabilities in the dynamics of iron-phosphorus cycling under preindustrial phosphorus loads, and modulated by external climate forcing. Oscillatory behavior could complicate the recovery from hypoxia during future trajectories of external loading reductions.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Carbon isotope and Rhenium/Osmium analysis from ODP Leg 174AX, Bass River site, New Jersey Shelf, North Atlantic

    No full text
    The Cenomanian–Turonian oceanic anoxic event (OAE 2) took place 94 million years ago and featured the development of widespread marine anoxia throughout a large part of the global ocean. In addition to the anoxic conditions other environmental disturbances also occurred, including extremely high global temperatures (with a superimposed cooling pulse dubbed the Plenus Cold Event), an intensified hydrological cycle, enhanced silicate weathering, and wildfires. OAE 2 and the climate/environmental perturbations associated with this event are thought to have been ultimately triggered by large-scale submarine volcanism during the emplacement of one or more large igneous provinces into/onto the oceanic crust. This link with volcanism is chiefly evidenced by geochronology studies of the volcanic rocks and stratigraphic archives of the event, and sedimentary proxies of volcanism utilized on these same records of OAE 2, with osmium-isotopes apparently the most reliable of these volcanic markers (at least for OAE 2). This dataset presents a new osmium-isotope dataset for a record of OAE 2 that was deposited on the New Jersey Shelf at the northeastern margin of the proto-North Atlantic, highlighting a signal of volcanic activity that is comparable with other sites. The data are in review for publication at the journal Paleoceanography and Paleoclimatology, where they are stratigraphically correlated with previously published evidence for temperature changes during OAE 2, highlighting the complex temporal and causal relationships between volcanism and climate during that event

    Nitrogen isotopes of bulk sediments for OAE2 samples

    No full text
    Sediment records of the stable isotopic composition of N (d15N) show light d15N values at several sites in the proto-North Atlantic during Oceanic Anoxic Event 2 (OAE 2) at the Cenomanian-Turonian transition (~94 Ma). The low d15N during the event is generally attributed to an increase in N2-fixation and incomplete uptake of ammonium for phytoplankton growth. A compilation of all reliable data for the proto North-Atlantic during OAE 2 demonstrates that the most pronounced negative shift in d15N from pre-OAE 2 to OAE 2 occurs in the open ocean, but with d15N never lower than -3 ppm. Using a box model of N cycling for the proto-North Atlantic during OAE 2, we show that N2-fixation is a major contributor to the d15N signal, especially in the open ocean. Incomplete uptake of ammonium for phytoplankton growth is important in regions dominated by downwelling, with lateral transport of ammonium acting as a major source. In the southern proto-North Atlantic, where bottom waters were euxinic, the light d15N signature is largely explained by upwelling of ammonium . Our study provides an overview of regional differences in d15N in the proto-North Atlantic and highlights the role of lateral exchange of water and nutrients, in addition to local biogeochemical processes, in determining d15N values of OAE 2 sediments
    • 

    corecore