29 research outputs found

    The effect of transparency on recognition of overlapping objects.

    Full text link

    Understanding the direct and indirect mechanisms of xylanase action on starch digestion in broilers

    Get PDF
    The objective of the current study was to investigate the mechanisms of xylanase action in a maize-soya diet and its effect on starch digestion. A total of 60 broilers were divided into 6 treatment groups; a control group without xylanase, and five other groups supplemented with xylanase (Econase XT 25; 100 g/t) from 1, 2, 3, 4 or 5 weeks before slaughter. At the end of the experiment, digesta was collected from the gizzard, upper and lower small intestine, and both caeca. Digesta pH ranged from pH 2.2-4.4, 5.9-6.6, 6.7-7.8 and 5.7-7.3 in the gizzard, upper small intestine, lower small intestine, and both caeca, respectively, with no effect of xylanase (P > 0.05). Scanning Electron Microscope (SEM) images along with total starch measurements showed the progression of starch digestion through the tract. The SEM did not show any greater disruption to cell wall material with xylanase supplementation. This suggests that xylanase was not working directly on the cell wall and provides evidence for the hypothesis that xylanase works through an indirect mechanism. Peptide YY (PYY) concentration in the blood was higher during the first few weeks of supplementation, with longer periods of supplementation nulling this effect, implying that xylanase may be acting through a prebiotic mechanism. The RT-q PCR results revealed a numerical increase in glucose transporter (GLUT2 and SGLT1) expression at 2 and 3 weeks of xylanase supplementation, respectively, which might suggest a greater absorption capacity of birds. From these results, a potential mechanism of xylanase action in maize-based diets has been proposed

    A randomised controlled trial investigating the effects of Mediterranean diet and aerobic exercise on cognition in cognitively healthy older people living independently within aged care facilities: The Lifestyle Intervention in Independent Living Aged Car

    Full text link
    Background: The rapid ageing of the population is becoming an area of great concern, both globally and in Australia. On a societal level, the cost of supporting an ageing demographic, particularly with their associated medical requirements, is becoming an ever increasing burden that is only predicted to rise in the foreseeable future. The progressive decline in individuals\u27 cognitive ability as they age, particularly with respect to the ever increasing incidence of Alzheimer\u27s Disease (AD) and other cognitive complications, is in many respects one of the foundation stones of these concerns. There have been numerous observational studies reporting on the positive effects that aerobic exercise and the Mediterranean diet appear to have on improving cognitive ability. However, the ability of such interventions to improve cognitive ability, or even reduce the rate of cognitive ageing, has not been fully examined by substantial interventional studies within an ageing population. Methods: The LIILAC trial will investigate the potential for cognitive change in a cohort of cognitively healthy individuals, between the ages of 60 and 90 years, living in independent accommodation within Australian aged care facilities. This four-arm trial will investigate the cognitive changes which may occur as a result of the introduction of aerobic exercise and/or Mediterranean diet into individuals\u27 lifestyles, as well as the mechanisms by which these changes may be occurring. Participants will be tested at baseline and 6 months on a battery of computer based cognitive assessments, together with cardiovascular and blood biomarker assessments. The cardiovascular measures will assess changes in arterial stiffness and central pulse pressures, while the blood measures will examine changes in metabolic profiles, including brain derived neurotrophic factor (BDNF), inflammatory factors and insulin sensitivity. Conclusion: It is hypothesised that exercise and Mediterranean diet interventions, both individually and in combination, will result in improvements in cognitive performance compared with controls. Positive findings in this research will have potential implications for the management of aged care, particularly in respect to reducing the rate of cognitive decline and the associated impacts both on the individual and the broader community

    Publishing and sharing multi-dimensional image data with OMERO

    Get PDF
    Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMERO’s Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org

    A Mediterranean Diet and Walking Intervention to Reduce Cognitive Decline and Dementia Risk in Independently Living Older Australians:The MedWalk Randomized Controlled Trial Experimental Protocol, Including COVID-19 Related Modifications and Baseline Characteristics.

    Get PDF
    Background:Several clinical trials have examined diet and physical activity lifestyle changes as mitigation strategies for risk factors linked to cognitive decline and dementias such as Alzheimer’s disease. However, the ability to modify these behaviors longer term, to impact cognitive health has remained elusive.Objective:The MedWalk trial’s primary aim is to investigate whether longer-term adherence to a Mediterranean-style diet and regular walking, delivered through motivational interviewing and cognitive-behavioral therapy (MI-CBT), can reduce age-associated cognitive decline and other dementia risk factors in older, independently living individuals without cognitive impairment.Methods:MedWalk, a one-year cluster-randomized controlled trial across two Australian states, recruited 60–90-year-old people from independent living retirement villages and the wider community. Participants were assigned to either the MedWalk intervention or a control group (maintaining their usual diet and physical activity). The primary outcome is 12-month change in visual memory and learning assessed from errors on the Paired Associates Learning Task of the Cambridge Neuropsychological Test Automated Battery. Secondary outcomes include cognition, mood, cardiovascular function, biomarkers related to nutrient status and cognitive decline, MI-CBT effectiveness, Mediterranean diet adherence, physical activity, quality of life, cost-effectiveness, and health economic evaluation.Progress and Discussion:Although COVID-19 impacts over two years necessitated a reduced timeline and sample size, MedWalk retains sufficient power to address its aims and hypotheses. Baseline testing has been completed with 157 participants, who will be followed over 12 months. If successful, MedWalk will inform interventions that could substantially reduce dementia incidence and ameliorate cognitive decline in the community.<br/

    Common themes in centriole and centrosome movements.

    Get PDF
    addresses: School of Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.Copyright © 2011 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Trends in Cell Biology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Trends in Cell Biology, 2011, Vol. 21, Issue 1, pp. 57 – 66 DOI: 10.1016/j.tcb.2010.09.004Centrioles are found in nearly all eukaryotic cells and are required for growth and maintenance of the radial array of microtubules, the mitotic spindle, and cilia and flagella. Different types of microtubule structures are often required at different places in a given cell; centrioles must move around to nucleate these varied structures. Here, we draw together recent data on diverse centriole movements to decipher common themes in how centrioles move. Par proteins establish and maintain the required cellular asymmetry. The actin cytoskeleton facilitates movement of multiple basal bodies. Microtubule forces acting on the cell cortex, and nuclear-cytoskeletal links, are important for positioning individual centrosomes, and during cell division. Knowledge of these common mechanisms can inform the study of centriole movements across biology

    How does exercise reduce the rate of age-associated cognitive decline? A review of potential mechanisms

    Full text link
    The rate of age-associated cognitive decline varies considerably between individuals. It is important, both on a societal and individual level, to investigate factors that underlie these differences in order to identify those which might realistically slow cognitive decline. Physical activity is one such factor with substantial support in the literature. Regular exercise can positively influence cognitive ability, reduce the rate of cognitive aging, and even reduce the risk of Alzheimer\u27s disease (AD) and other dementias. However, while there is substantial evidence in the extant literature for the effect of exercise on cognition, the processes that mediate this relationship are less clear. This review examines cardiovascular health, production of brain derived neurotrophic factor (BDNF), insulin sensitivity, stress, and inflammation as potential pathways, via which exercise may maintain or improve cognitive functioning, and may be particularly pertinent in the context of the aging brain. A greater understanding of these mechanisms and their potential relationships with exercise and cognition will be invaluable in providing biomarkers for investigating the efficacy of differing exercise regimes on cognitive outcomes

    Glycerophospholipid Supplementation as a Potential Intervention for Supporting Cerebral Structure in Older Adults

    No full text
    Modifying nutritional intake through supplementation may be efficacious for altering the trajectory of cerebral structural decline evident with increasing age. To date, there have been a number of clinical trials in older adults whereby chronic supplementation with B vitamins, omega-3 fatty acids, or resveratrol, has been observed to either slow the rate of decline or repair cerebral tissue. There is also some evidence from animal studies indicating that supplementation with glycerophospholipids (GPL) may benefit cerebral structure, though these effects have not yet been investigated in adult humans. Despite this paucity of research, there are a number of factors predicting poorer cerebral structure in older humans, which GPL supplementation appears to beneficially modify or protect against. These include elevated concentrations of homocysteine, unbalanced activity of reactive oxygen species both increasing the risk of oxidative stress, increased concentrations of pro-inflammatory messengers, as well as poorer cardio- and cerebrovascular function. As such, it is hypothesized that GPL supplementation will support cerebral structure in older adults. These cerebral effects may influence cognitive function. The current review aims to provide a theoretical basis for future clinical trials investigating the effects of GPL supplementation on cerebral structural integrity in older adults

    Adherence to a Mediterranean-style diet and effects on cognition in adults: a qualitative evaluation of the systematic review of longitudinal and prospective trials

    Get PDF
    The Mediterranean-style diet (MedDiet) involves substantial intake of fruits, vegetables, and fish, and a lower consumption of dairy, red meat, and sugars. Over the past 15-years, much empirical evidence supports the suggestion that a MedDiet may be beneficial with respect to reducing the incidence of cardiovascular disease, cancer, metabolic syndrome, and dementia. A number of cross-sectional studies that have examined the impact of MedDiet on cognition have yielded largely positive results. The objective of this review is to evaluate longitudinal and prospective trials to gain an understanding of how a MedDiet may impact cognitive processes over time. The included studies were aimed at improving cognition or minimizing of cognitive decline. Studies reviewed included assessments of dietary status using either a food frequency questionnaire or a food diary assessment. Eighteen articles meeting our inclusion criteria were subjected to systematic review. These revealed that higher adherence to a MedDiet is associated with slower rates of cognitive decline, reduced conversion to Alzheimer's disease, and improvements in cognitive function. The specific cognitive domains that were found to benefit with improved Mediterranean Diet Score were memory (delayed recognition, long-term, and working memory), executive function, and visual constructs. The current review has also considered a number of methodological issues in making recommendations for future research. The utilization of a dietary pattern, such as the MedDiet, will be essential as part of the armamentarium to maintain quality of life and reduce the potential social and economic burden of dementia
    corecore