1,496 research outputs found
Liquid-state NMR analysis of nanocelluloses
Recent developments in ionic liquid electrolytes for cellulose or biomass dissolution has also allowed for high-resolution 1H and 13C NMR on very high molecular weight cellulose. This permits the development of advanced liquid-state quantitative NMR methods for characterization of unsubstituted and low degree of substitution celluloses, for example, surface-modified nanocelluloses, which are insoluble in all molecular solvents. As such, we present the use of the tetrabutylphosphonium acetate ([P4444][OAc]):DMSO-d6 electrolyte in the 1D and 2D NMR characterization of poly(methyl methacrylate) (PMMA)-grafted cellulose nanocrystals (CNCs). PMMA-g-CNCs was chosen as a difficult model to study, to illustrate the potential of the technique. The chemical shift range of [P4444][OAc] is completely upfield of the cellulose backbone signals, avoiding signal overlap. In addition, application of diffusion-editing for 1H and HSQC was shown to be effective in the discrimination between PMMA polymer graft resonances and those from low molecular weight components arising from the solvent system. The bulk ratio of methyl methacrylate monomer to anhydroglucose unit was determined using a combination of HSQC and quantitative 13C NMR. After detachment and recovery of the PMMA grafts, through methanolysis, DOSY NMR was used to determine the average self-diffusion coefficient and, hence, molecular weight of the grafts compared to self-diffusion coefficients for PMMA GPC standards. This finally led to a calculation of both graft length and graft density using liquid-state NMR techniques. In addition, it was possible to discriminate between triads and tetrads, associated with PMMA tacticity, of the PMMA still attached to the CNCs (before methanolysis). CNC reducing end and sulfate half ester resonances, from sulfuric acid hydrolysis, were also assignable. Furthermore, other biopolymers, such as hemicelluloses and proteins (silk and wool), were found to be soluble in the electrolyte media, allowing for wider application of this method beyond just cellulose analytics.Peer reviewe
Recommended from our members
The Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory
CAMS operates an HVEC FN tandem accelerator for use in both basic research and technology development. The accelerator is operated under a distributed computer control system with sophisticated auto-scaling, beam flat-topping, archiving, and recall capabilities, which makes possible rapid and precise switching between experimental configurations daily. Using the spectrometer, the AMS group can routinely measure the isotopes {sup 3}H, {sup 9}Be, {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 41}Ca, and {sup 129}I at abundances as low as 1 part in 10{sup 16}
Spatial distributions of XCO2seasonal cycle amplitude and phase over northern high-latitude regions
Satellite-based observations of atmospheric carbon dioxide (CO) provide measurements in remote regions, such as the biologically sensitive but undersampled northern high latitudes, and are progressing toward true global data coverage. Recent improvements in satellite retrievals of total column-averaged dry air mole fractions of CO (X) from the NASA Orbiting Carbon Observatory 2 (OCO-2) have allowed for unprecedented data coverage of northern high-latitude regions, while maintaining acceptable accuracy and consistency relative to ground-based observations, and finally providing sufficient data in spring and autumn for analysis of satellite-observed X seasonal cycles across a majority of terrestrial northern high-latitude regions. Here, we present an analysis of X seasonal cycles calculated from OCO-2 data for temperate, boreal, and tundra regions, subdivided into 5â latitude by 20â longitude zones. We quantify the seasonal cycle amplitudes (SCAs) and the annual half drawdown day (HDD). OCO-2 SCAs are in good agreement with ground-based observations at five high-latitude sites, and OCO-2 SCAs show very close agreement with SCAs calculated for model estimates of X from the Copernicus Atmosphere Monitoring Services (CAMS) global inversion-optimized greenhouse gas flux model v19r1 and the CarbonTracker2019 model (CT2019B). Model estimates of X from the GEOS-Chem CO simulation version 12.7.2 with underlying biospheric fluxes from CarbonTracker2019 (GC-CT2019) yield SCAs of larger magnitude and spread over a larger range than those from CAMS, CT2019B, or OCO-2; however, GC-CT2019 SCAs still exhibit a very similar spatial distribution across northern high-latitude regions to that from CAMS, CT2019B, and OCO-2. Zones in the Asian boreal forest were found to have exceptionally large SCA and early HDD, and both OCO-2 data and model estimates yield a distinct longitudinal gradient of increasing SCA from west to east across the Eurasian continent. In northern high-latitude regions, spanning latitudes from 47 to 72ââN, longitudinal gradients in both SCA and HDD are at least as pronounced as latitudinal gradients, suggesting a role for global atmospheric transport patterns in defining spatial distributions of X seasonality across these regions. GEOS-Chem surface contact tracers show that the largest X SCAs occur in areas with the greatest contact with land surfaces, integrated over 15â30âd. The correlation of XCO2 SCA with these land surface contact tracers is stronger than the correlation of X SCA with the SCA of CO fluxes or the total annual CO flux within each 5â latitude by 20â longitude zone. This indicates that accumulation of terrestrial CO flux during atmospheric transport is a major driver of regional variations in X SCA
Percutaneous versus surgical strategy for tracheostomy: protocol for a systematic review and meta-analysis of perioperative and postoperative complications
Background: Tracheostomy is one of the most frequently performed procedures in intensive care medicine. The two main approaches to form a tracheostoma are the open surgical tracheotomy (ST) and the interventional strategy of percutaneous dilatational tracheotomy (PDT). It is particularly important to the critically ill patients that both procedures are performed with high success rates and low complication frequencies. Therefore, the aim of this systematic review is to summarize and analyze existing and relevant evidence for peri- and postoperative parameters of safety. Methods/design: A systematic literature search will be conducted in The Cochrane Library, MEDLINE, LILACS, and Embase to identify all randomized controlled trials (RCTs) comparing peri- and postoperative complications between the two strategies and to define the strategy with the lower risk of potentially life-threatening events. A priori defined data will be extracted from included studies, and methodological quality will be assessed according to the recommendations of the Cochrane Collaboration. Discussion: The findings of this systematic review with proportional meta-analysis will help to identify the strategy with the lowest frequency of potentially life-threatening events. This may influence daily practice, and the data may be implemented in treatment guidelines or serve as the basis for planning further randomized controlled trials. Considering the critical health of these patients, they will particularly benefit from evidence-based treatment. Systematic review registration: PROSPERO CRD4201502196
Search for Charged Current Coherent Pion Production on Carbon in a Few-GeV Neutrino Beam
The SciBooNE Collaboration has performed a search for charged current
coherent pion production from muon neutrinos scattering on carbon, \nu_\mu
^{12}C \to \mu^- ^{12}C \pi^+, with two distinct data samples. No evidence for
coherent pion production is observed. We set 90% confidence level upper limits
on the cross section ratio of charged current coherent pion production to the
total charged current cross section at 0.67\times 10^{-2} at mean neutrino
energy 1.1 GeV and 1.36\times 10^{-2} at mean neutrino energy 2.2 GeV.Comment: 18 pages, 16 figures, Minor revisions to match version accepted for
publication in Physical Review
Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV
We present the results of our analysis of cosmic-ray electrons using about 8
million electron candidates detected in the first 12 months on-orbit by the
Fermi Large Area Telescope. This work extends our previously-published
cosmic-ray electron spectrum down to 7 GeV, giving a spectral range of
approximately 2.5 decades up to 1 TeV. We describe in detail the analysis and
its validation using beam-test and on-orbit data. In addition, we describe the
spectrum measured via a subset of events selected for the best energy
resolution as a cross-check on the measurement using the full event sample. Our
electron spectrum can be described with a power law with no prominent spectral features within systematic uncertainties.
Within the limits of our uncertainties, we can accommodate a slight spectral
hardening at around 100 GeV and a slight softening above 500 GeV.Comment: 20 pages, 23 figures, 2 tables, published in Physical Review D 82,
092004 (2010) - contact authors: C. Sgro', A. Moisee
PparÎł2 Is a Key Driver of Longevity in the Mouse
Aging involves a progressive physiological remodeling that is controlled by both genetic and environmental factors. Many of these factors impact also on white adipose tissue (WAT), which has been shown to be a determinant of lifespan. Interrogating a transcriptional network for predicted causal regulatory interactions in a collection of mouse WAT from F2 crosses with a seed set of 60 known longevity genes, we identified a novel transcriptional subnetwork of 742 genes which represent thus-far-unknown longevity genes. Within this subnetwork, one gene was Pparg (Nr1c3), an adipose-enriched nuclear receptor previously not associated with longevity. In silico, both the PPAR signaling pathway and the transcriptional signature of PparÎł agonist rosiglitazone overlapped with the longevity subnetwork, while in vivo, lowered expression of Pparg reduced lifespan in both the lipodystrophic Pparg1/2-hypomorphic and the Pparg2-deficient mice. These results establish PparÎł2 as one of the determinants of longevity and suggest that lifespan may be rather determined by a purposeful genetic program than a random process
- âŠ