88 research outputs found

    Maritime policy in Japan

    Get PDF
    textabstractPurpose: Prior to the implementation of arterial spin labeling (ASL) in clinical multi-center studies, it is important to establish its status quo inter-vendor reproducibility. This study evaluates and compares the intra- and inter-vendor reproducibility of pseudo-continuous ASL (pCASL) as clinically implemented by GE and Philips. Material and Methods: 22 healthy volunteers were scanned twice on both a 3T GE and a 3T Philips scanner. The main difference in implementation between the vendors was the readout module: spiral 3D fast spin echo vs. 2D gradient-echo echo-planar imaging respectively. Mean and variation of cerebral blood flow (CBF) were compared for the total gray matter (GM) and white matter (WM), and on a voxel-level. Results: Whereas the mean GM CBF of both vendors was almost equal (p = 1.0), the mean WM CBF was significantly different (p<0.01). The inter-vendor GM variation did not differ from the intra-vendor GM variation (p = 0.3 and p = 0.5 for GE and Philips respectively). Spatial inter-vendor CBF and variation differences were observed in several GM regions and in the WM. Conclusion: These results show that total GM CBF-values can be exchanged between vendors. For the inter-vendor comparison of GM regions or WM, these results encourage further standardization of ASL implementation among vendors

    Neuropsychopharmacology advance online publication

    Get PDF
    Dexamphetamine (dAMPH) is a stimulant drug that is widely used recreationally as well as for the treatment of attention-deficit hyperactivity disorder (ADHD). Although animal studies have shown neurotoxic effects of dAMPH on the dopaminergic system, little is known about such effects on the human brain. Here, we studied the dopaminergic system at multiple physiological levels in recreational dAMPH users and age, gender, and IQ-matched dAMPH-naïve healthy controls. We assessed baseline D 2/3 receptor availability, in addition to changes in dopamine (DA) release using single-photon emission computed tomography and DA functionality using pharmacological magnetic resonance imaging, following a dAMPH challenge. Also, the subjective responses to the challenge were determined. dAMPH users displayed significantly lower striatal DA D 2/3 receptor binding compared with healthy controls. In dAMPH users, we further observed a blunted DA release and DA functionality to an acute dAMPH challenge, as well as a blunted subjective response. Finally, the lower D 2/3 availability, the more pleasant the dAMPH administration was experienced by control subjects, but not by dAMPH users. Thus, in agreement with preclinical studies, we show that the recreational use of dAMPH in human subjects is associated with dopaminergic system dysfunction. These findings warrant further (longitudinal) investigations and call for caution when using this drug recreationally and for ADHD

    In Vivo T1 of Blood Measurements in Children with Sickle Cell Disease Improve Cerebral Blood Flow Quantification from Arterial Spin-Labeling MRI

    Full text link
    Children with sickle cell disease have low hematocrit and elevated CBF, the latter of which can be assessed with arterial spin-labeling MR imaging. Quantitative CBF values are obtained by using an estimation of the longitudinal relaxation time of blood (T1blood). Because T1blood depends on hematocrit in healthy individuals, we investigated the importance of measuring T1blood in vivo with MR imaging versus calculating it from hematocrit or assuming an adult fixed value recommended by the literature, hypothesizing that measured T1blood would be the most suited for CBF quantification in children with sickle cell disease. Four approaches for T1blood estimation were investigated in 39 patients with sickle cell disease and subsequently used in the CBF quantification from arterial spin-labeling MR imaging. First, we used 1650 ms as recommended by the literature (T1blood-fixed); second, T1blood calculated from hematocrit measured in patients (T1blood-hematocrit); third, T1blood measured in vivo with a Look-Locker MR imaging sequence (T1blood-measured); and finally, a mean value from T1blood measured in this study in children with sickle cell disease (T1blood-sickle cell disease). Quantitative flow measurements acquired with phase-contrast MR imaging served as reference values for CBF. T1blood-measured (1818 ± 107 ms) was higher than the literature recommended value of 1650 ms, was significantly lower than T1blood-hematocrit (2058 ± 123 ms, P < .001), and, most interesting, did not correlate with hematocrit measurements. Use of either T1blood-measured or T1blood-sickle cell disease provided the best agreement on CBF between arterial-spin labeling and phase-contrast MR imaging reference values. This work advocates the use of patient-specific measured T1blood or a standardized value (1818 ms) in the quantification of CBF from arterial spin-labeling in children with SC

    In vivo assessment of neuroinflammation in progressive multiple sclerosis: a proof of concept study with [18F]DPA714 PET

    Get PDF
    BACKGROUND: Over the past decades, positron emission tomography (PET) imaging has become an increasingly useful research modality in the field of multiple sclerosis (MS) research, as PET can visualise molecular processes, such as neuroinflammation, in vivo. The second generation PET radioligand [18F]DPA714 binds with high affinity to the 18-kDa translocator-protein (TSPO), which is mainly expressed on activated microglia. The aim of this proof of concept study was to evaluate this in vivo marker of neuroinflammation in primary and secondary progressive MS. METHODS: All subjects were genotyped for the rs6971 polymorphism within the TSPO gene, and low-affinity binders were excluded from participation in this study. Eight patients with progressive MS and seven age and genetic binding status matched healthy controls underwent a 60 min dynamic PET scan using [18F]DPA714, including both continuous on-line and manual arterial blood sampling to obtain metabolite-corrected arterial plasma input functions. RESULTS: The optimal model for quantification of [18F]DPA714 kinetics was a reversible two-tissue compartment model with additional blood volume parameter. For genetic high-affinity binders, a clear increase in binding potential was observed in patients with MS compared with age-matched controls. For both high and medium affinity binders, a further increase in binding potential was observed in T2 white matter lesions compared with non-lesional white matter. Volume of distribution, however, did not differentiate patients from healthy controls, as the large non-displaceable compartment of [18F]DPA714 masks its relatively small specific signal. CONCLUSION: The TSPO radioligand [18F]DPA714 can reliably identify increased focal and diffuse neuroinflammation in progressive MS when using plasma input-derived binding potential, but observed differences were predominantly visible in high-affinity binders

    ExploreASL: an image processing pipeline for multi-center ASL perfusion MRI studies

    Get PDF
    Arterial spin labeling (ASL) has undergone significant development since its inception, with a focus on improving standardization and reproducibility of its acquisition and quantification. In a community-wide effort towards robust and reproducible clinical ASL image processing, we developed the software package ExploreASL, allowing standardized analyses across centers and scanners. The procedures used in ExploreASL capitalize on published image processing advancements and address the challenges of multi-center datasets with scanner-specific processing and artifact reduction to limit patient exclusion. ExploreASL is self-contained, written in MATLAB and based on Statistical Parameter Mapping (SPM) and runs on multiple operating systems. To facilitate collaboration and data-exchange, the toolbox follows several standards and recommendations for data structure, provenance, and best analysis practice. ExploreASL was iteratively refined and tested in the analysis of >10,000 ASL scans using different pulse-sequences in a variety of clinical populations, resulting in four processing modules: Import, Structural, ASL, and Population that perform tasks, respectively, for data curation, structural and ASL image processing and quality control, and finally preparing the results for statistical analyses on both single-subject and group level. We illustrate ExploreASL processing results from three cohorts: perinatally HIV-infected children, healthy adults, and elderly at risk for neurodegenerative disease. We show the reproducibility for each cohort when processed at different centers with different operating systems and MATLAB versions, and its effects on the quantification of gray matter cerebral blood flow. ExploreASL facilitates the standardization of image processing and quality control, allowing the pooling of cohorts which may increase statistical power and discover between-group perfusion differences. Ultimately, this workflow may advance ASL for wider adoption in clinical studies, trials, and practice

    Validation and application of arterial spin labeling MRI for cerebral perfusion

    Get PDF
    Non-invasive evaluation of the cerebral blood flow (CBF) by means of arterial spin labeling (ASL) MRI offers an interesting alternative to currently used clinical perfusion measurement techniques. Where the current perfusion imaging techniques require the injection of an exogenous contrast-agent, ASL employs the blood that travels to the brain tissue as an endogenous tracer, for a non-invasive evaluation. However, due to the limited image quality and reliability of ASL measurements, the application of ASL was predominantly limited to highly specialized MRI centers. Recent technical developments in ASL research have elevated the quality and reliability of the technique to a level where it is ready for widespread ASL usage in clinical and research applications. However, with the focus mainly on technical improvements, several clinically relevant aspects such as patient comfort and quantitative performance have not been fully investigated to date. The main aim of this thesis was therefore to investigate such clinically relevant aspects. The chapters in this thesis address a few of the important steps necessary into making ASL a clinically accepted technique for use in daily clinical practice. Where chapters 2 and 3 focus on improving patient comfort, chapters 4 to 6 address the performance of different ASL techniques with respect to the gold-standard perfusion measurement
    • …
    corecore