132 research outputs found

    Genetic drift at expanding frontiers promotes gene segregation

    Full text link
    Competition between random genetic drift and natural selection plays a central role in evolution: Whereas non-beneficial mutations often prevail in small populations by chance, mutations that sweep through large populations typically confer a selective advantage. Here, however, we observe chance effects during range expansions that dramatically alter the gene pool even in large microbial populations. Initially well-mixed populations of two fluorescently labeled strains of Escherichia coli develop well-defined, sector-like regions with fractal boundaries in expanding colonies. The formation of these regions is driven by random fluctuations that originate in a thin band of pioneers at the expanding frontier. A comparison of bacterial and yeast colonies (Saccharomyces cerevisiae) suggests that this large-scale genetic sectoring is a generic phenomenon that may provide a detectable footprint of past range expansions.Comment: Please visit http://www.pnas.org/content/104/50/19926.abstract for published articl

    Improved Network Performance via Antagonism: From Synthetic Rescues to Multi-drug Combinations

    Get PDF
    Recent research shows that a faulty or sub-optimally operating metabolic network can often be rescued by the targeted removal of enzyme-coding genes--the exact opposite of what traditional gene therapy would suggest. Predictions go as far as to assert that certain gene knockouts can restore the growth of otherwise nonviable gene-deficient cells. Many questions follow from this discovery: What are the underlying mechanisms? How generalizable is this effect? What are the potential applications? Here, I will approach these questions from the perspective of compensatory perturbations on networks. Relations will be drawn between such synthetic rescues and naturally occurring cascades of reaction inactivation, as well as their analogues in physical and other biological networks. I will specially discuss how rescue interactions can lead to the rational design of antagonistic drug combinations that select against resistance and how they can illuminate medical research on cancer, antibiotics, and metabolic diseases.Comment: Online Open "Problems and Paradigms" articl

    Analysis of genetic systems using experimental evolution and whole-genome sequencing

    Get PDF
    The application of whole-genome sequencing to the study of microbial evolution promises to reveal the complex functional networks of mutations that underlie adaptation. A recent study of parallel evolution in populations of Escherichia coli shows how adaptation involves both functional changes to specific proteins as well as global changes in regulation

    Recombination Speeds Adaptation by Reducing Competition between Beneficial Mutations in Populations of Escherichia coli

    Get PDF
    Identification of the selective forces contributing to the origin and maintenance of sex is a fundamental problem in biology. The Fisher–Muller model proposes that sex is advantageous because it allows beneficial mutations that arise in different lineages to recombine, thereby reducing clonal interference and speeding adaptation. I used the F plasmid to mediate recombination in the bacterium Escherichia coli and measured its effect on adaptation at high and low mutation rates. Recombination increased the rate of adaptation ∼3-fold more in the high mutation rate treatment, where beneficial mutations had to compete for fixation. Sequencing of candidate loci revealed the presence of a beneficial mutation in six high mutation rate lines. In the absence of recombination, this mutation took longer to fix and, over the course of its substitution, conferred a reduced competitive advantage, indicating interference between competing beneficial mutations. Together, these results provide experimental support for the Fisher–Muller model and demonstrate that plasmid-mediated gene transfer can accelerate bacterial adaptation

    Cost of Antibiotic Resistance and the Geometry of Adaptation

    Get PDF
    The distribution of effects of beneficial mutations is key to our understanding of biological adaptation. Yet, empirical estimates of this distribution are scarce, and its functional form is largely unknown. Theoretical models of adaptation predict that the functional form of this distribution should depend on the distance to the optimum. Here, we estimate the rate and distribution of adaptive mutations that compensate for the effect of a single deleterious mutation, which causes antibiotic resistance. Using a system with multiple molecular markers, we estimate the distribution of fitness effects of mutations at two distances from the adaptive peak in 60 populations of Escherichia coli. We find that beneficial mutations, which can contribute to compensatory evolution, occur at very high rates, of the order of 10−5 per genome per generation and can be detected within a few tens of generations. They cause an average fitness increase of 2.5% and 3.6%, depending on the cost of resistance, which is expected under Fisher's geometrical model of adaptation. Moreover, we provide the first description of the distribution of beneficial mutations, segregating during the process of compensatory evolution, to antibiotic resistances bearing different costs. Hence, these results have important implications to understanding the spread and maintenance of antibiotic resistance in bacteria

    Heterogeneous Adaptive Trajectories of Small Populations on Complex Fitness Landscapes

    Get PDF
    Background Small populations are thought to be adaptively handicapped, not only because they suffer more from deleterious mutations but also because they have limited access to new beneficial mutations, particularly those conferring large benefits. Methodology/Principal Findings Here, we test this widely held conjecture using both simulations and experiments with small and large bacterial populations evolving in either a simple or a complex nutrient environment. Consistent with expectations, we find that small populations are adaptively constrained in the simple environment; however, in the complex environment small populations not only follow more heterogeneous adaptive trajectories, but can also attain higher fitness than the large populations. Large populations are constrained to near deterministic fixation of rare large-benefit mutations. While such determinism speeds adaptation on the smooth adaptive landscape represented by the simple environment, it can limit the ability of large populations from effectively exploring the underlying topography of rugged adaptive landscapes characterized by complex environments. Conclusions Our results show that adaptive constraints often faced by small populations can be circumvented during evolution on rugged adaptive landscapes
    corecore