51 research outputs found

    Hamiltonian Approach to QCD: The effective potential of the Polyakov loop

    Full text link
    The effective potential of the order parameter for confinement is calculated within the Hamiltonian approach to Yang--Mills theory. Compactifying one spatial dimension and using a background gauge fixing this potential is obtained by minimizing the energy density for a given background field. Using Gaussian type trial wave functionals I establish an analytic relation between the propagators in the background gauge at finite temperature and the corresponding zero temperature propagators in Coulomb gauge. In the simplest truncation, neglecting the ghost and using the ultraviolet form of the gluon energy one recovers the Weiss potential. From the fully non-perturbative potential (with the ghost included) one extracts a critical temperature of the deconfinement phase transition of 270 MeV for the gauge group SU(2).Comment: 8 pages, 6 eps figures. Talk given by Hugo Reinhardt at Xth Quark Confinement and the Hadron Spectrum, October 8--12, 2012 TUM Campus Garching, Munich, German

    The effective potential of the confinement order parameter in the Hamiltonian approach

    Get PDF
    The effective potential of the order parameter for confinement is calculated for SU(N) Yang--Mills theory in the Hamiltonian approach. Compactifying one spatial dimension and using a background gauge fixing, this potential is obtained within a variational approach by minimizing the energy density for given background field. In this formulation the inverse length of the compactified dimension represents the temperature. Using Gaussian trial wave functionals we establish an analytic relation between the propagators in the background gauge at finite temperature and the corresponding zero-temperature propagators in Coulomb gauge. In the simplest truncation, neglecting the ghost and using the ultraviolet form of the gluon energy, we recover the Weiss potential. We explicitly show that the omission of the ghost drastically increases the transition temperature. From the full non-perturbative potential (with the ghost included) we extract a critical temperature of the deconfinement phase transition of 269 MeV for the gauge group SU(2) and 283 MeV for SU(3).Comment: 26 pages, 17 eps figure

    The deconfinement phase transition in the Hamiltonian approach to Yang--Mills theory in Coulomb gauge

    Full text link
    The deconfinement phase transition of SU(2) Yang--Mills theory is investigated in the Hamiltonian approach in Coulomb gauge assuming a quasi-particle picture for the grand canonical gluon ensemble. The thermal equilibrium state is found by minimizing the free energy with respect to the quasi-gluon energy. Above the deconfinement phase transition the ghost form factor remains infrared divergent but its infrared exponent is approximately halved, while the gluon energy, being infrared divergent in the confined phase, becomes infrared finite in the deconfined phase. For the effective gluon mass we find a critical exponent of 0.37. Using the lattice results for the gluon propagator to fix the scale, the deconfinement transition temperature is obtained in the range of 275 to 290 MeV.Comment: 20 pages, 13 figures, accepted for publication by Phys. Rev.

    Hamiltonzugang zum Deconfinement-Phasenübergang der Yang-Mills-Theorie

    Get PDF
    In dieser Arbeit wird der Hamiltonzugang zur Yang-Mills-Theorie bei endlichen Temperaturen zur Untersuchung des Deconfinement-Phasenübergangs verwendet

    Neuromagnetic Evidence for Early Auditory Restoration of Fundamental Pitch

    Get PDF
    Background: Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset. Methodology: Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz), while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz), such that the restored fundamental (also knows as ‘‘virtual pitch’’) changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component. Principal Findings: We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch) counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies. Conclusions: Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived i

    Mixed-phase description of colossal magnetoresistive manganites

    Full text link
    In view of recent experiments, indicating the spatial coexistence of conducting and insulating regions in the ferromagnetic metallic phase of doped manganites, we propose a refined mixed-phase description. The model is based on the competition of a double-exchange driven metallic component and a polaronic insulating component, whose volume fractions and carrier concentrations are determined self-consistently by requiring equal pressure and chemical potential. The resulting phase diagram as well as the order of the phase transition are in very good agreement with measured data. In addition, modelling the resistivity of the mixed, percolative phase by a random resistor network, we obtain a pronounced negative magnetoresistance in the vicinity of the Curie temperature TCT_C.Comment: 7 pages, 6 figure

    Best Linear Unbiased Prediction of Genomic Breeding Values Using a Trait-Specific Marker-Derived Relationship Matrix

    Get PDF
    With the availability of high density whole-genome single nucleotide polymorphism chips, genomic selection has become a promising method to estimate genetic merit with potentially high accuracy for animal, plant and aquaculture species of economic importance. With markers covering the entire genome, genetic merit of genotyped individuals can be predicted directly within the framework of mixed model equations, by using a matrix of relationships among individuals that is derived from the markers. Here we extend that approach by deriving a marker-based relationship matrix specifically for the trait of interest

    Impacts of Nitrogen and Phosphorus: From Genomes to Natural Ecosystems and Agriculture

    Get PDF
    This project received grants from the Research Council of Norway (“Genome” project, no. 196468), awarded to DH. MT and MG benefitted from funding by the Natural Environment Research Council (NE/J012106/1). CE acknowledges funding from the German Research Foundation (DFG, EIZ841/4-1, and EIZ841/6-1). LW was funded through the U.S. National Science Foundation (NSF-IOS-OEI) grant no. 1256881 during the manuscript preparation stage. The U.S. National Science Foundation, grant no. 1439461, provided support for graduate students and post-doctoral researchers to attend the conference. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation

    Crowdsourcing hypothesis tests: Making transparent how design choices shape research results

    Get PDF
    To what extent are research results influenced by subjective decisions that scientists make as they design studies? Fifteen research teams independently designed studies to answer fiveoriginal research questions related to moral judgments, negotiations, and implicit cognition. Participants from two separate large samples (total N > 15,000) were then randomly assigned to complete one version of each study. Effect sizes varied dramatically across different sets of materials designed to test the same hypothesis: materials from different teams renderedstatistically significant effects in opposite directions for four out of five hypotheses, with the narrowest range in estimates being d = -0.37 to +0.26. Meta-analysis and a Bayesian perspective on the results revealed overall support for two hypotheses, and a lack of support for three hypotheses. Overall, practically none of the variability in effect sizes was attributable to the skill of the research team in designing materials, while considerable variability was attributable to the hypothesis being tested. In a forecasting survey, predictions of other scientists were significantly correlated with study results, both across and within hypotheses. Crowdsourced testing of research hypotheses helps reveal the true consistency of empirical support for a scientific claim.</div
    corecore