29 research outputs found

    Adaptive Harmonic Analysis

    Get PDF
    In this paper we describe a new approach to the harmonic analysis of the tide. For a number of reasons the harmonic constants are not really constant but vary slowly in time. Therefore, we introduce a narrow-band noise process to model the time-varying behaviour of these harmonic parameters. Furthermore, since the measurements available are not perfect, we also introduce a, possibly time-varying, measurement noise process to model the errors associated with the measurement process. By employing a Kalman filter to estimate the harmonic parameters recursively, the estimates can be adapted contineously to chaning conditions. The adaptive harmonic analysis can be used for the on-line prediction of the astronomical tide or, since the Kalman filter also produces the covariance of the estimation error, to gain quantitative insight into the resolution of tidal constituents

    Two-particle models for the estimation of the mean and standard deviation of concentrations in coastal waters

    Get PDF
    In this paper we study the mean and standard deviation of concentrations using random walk models. Two-particle models that takes into account the space correlation of the turbulence are introduced and some properties of the distribution of the particle concentration are studied. In order to reduce the CPU time of the calculation a new estimator based on reverse time diffusion is applied. This estimator has been introduced recently by Milstein, Schoenmakers, and Spokoiny (2004). Some numerical aspects of the implementation are discussed for relative simple test problems and finally a realistic application to predict the spreading of the pollutant in the Dutch coastal zone is described

    Dynamic p-enrichment schemes for multicomponent reactive flows

    Full text link
    We present a family of p-enrichment schemes. These schemes may be separated into two basic classes: the first, called \emph{fixed tolerance schemes}, rely on setting global scalar tolerances on the local regularity of the solution, and the second, called \emph{dioristic schemes}, rely on time-evolving bounds on the local variation in the solution. Each class of pp-enrichment scheme is further divided into two basic types. The first type (the Type I schemes) enrich along lines of maximal variation, striving to enhance stable solutions in "areas of highest interest." The second type (the Type II schemes) enrich along lines of maximal regularity in order to maximize the stability of the enrichment process. Each of these schemes are tested over a pair of model problems arising in coastal hydrology. The first is a contaminant transport model, which addresses a declinature problem for a contaminant plume with respect to a bay inlet setting. The second is a multicomponent chemically reactive flow model of estuary eutrophication arising in the Gulf of Mexico.Comment: 29 pages, 7 figures, 3 table

    Extending the square root method to account for additive forecast noise in ensemble methods

    Get PDF
    A square root approach is considered for the problem of accounting for model noise in the forecast step of the ensemble Kalman filter (EnKF) and related algorithms. The primary aim is to replace the method of simulated, pseudo-random additive so as to eliminate the associated sampling errors. The core method is based on the analysis step of ensemble square root filters, and consists in the deterministic computation of a transform matrix. The theoretical advantages regarding dynamical consistency are surveyed, applying equally well to the square root method in the analysis step. A fundamental problem due to the limited size of the ensemble subspace is discussed, and novel solutions that complement the core method are suggested and studied. Benchmarks from twin experiments with simple, low-order dynamics indicate improved performance over standard approaches such as additive, simulated noise, and multiplicative inflation

    Data Assimilation as a Tool to Improve Chemical Transport Models Performance in Developing Countries

    Get PDF
    Particulate matter (PM) is one of the most problematic pollutants in urban air. The effects of PM on human health, associated especially with PM of ≤2.5μm in diameter, include asthma, lung cancer and cardiovascular disease. Consequently, major urban centers commonly monitor PM2.5 as part of their air quality management strategies. The Chemical Transport models allow for a permanent monitoring and prediction of pollutant behavior for all the regions of interest, different to the sensor network where the concentration is just available in specific points. In this chapter a data assimilation system for the LOTOS-EUROS chemical transport model has been implemented to improve the simulation and forecast of Particulate Matter in a densely populated urban valley of the tropical Andes. The Aburrá Valley in Colombia was used as a case study, given data availability and current environmental issues related to population expansion. Using different experiments and observations sources, we shown how the Data Assimilation can improve the model representation of pollutants

    Lagrangian ocean analysis: fundamentals and practices

    Get PDF
    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing

    RANDOM WALK MODEL IN CASE OF ISO-AND DIAPYCNAL DIFFUSION

    No full text
    Abstract. In order to efficiently simulate the advection-diffusion processes along and across density surfaces, we need to deal with the diffusivity tensor containing off-diagonal element

    Assessing Lagrangian schemes for simulating diffusion on non-flat isopycnal surfaces

    No full text
    In large-scale ocean flows diffusion mostly occurs along the density surfaces and its representation resorts to the Redi isopycnal diffusivity tensor containing off-diagonal terms. This study focuses on the Lagrangian/particle framework for simulating such diffusive processes. A two-dimensional idealised test case for purely isopycnal diffusion on non-flat isopycnal surfaces is considered. Implementation of the higher order strong Euler, Milstein and order 1.5 Taylor schemes on our idealised test case shows that the higher order strong schemes produce the better pathwise approximations. The effective spurious diapycnal diffusivity is measured for each Lagrangian scheme under consideration. The propensity of the particles to move away from the isopycnal surface on which they were released is also measured. This shows that for non-flat isopycnals the order of convergence of the Euler scheme is not sufficient to achieve the desired accuracy. However, the Milstein scheme seems to be a good choice to achieve in an efficient way a fairly accurate result
    corecore