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Abstract

Particulate matter (PM) is one of the most problematic pollutants in urban air.
The effects of PM on human health, associated especially with PM of ≤ 2.5μm in
diameter, include asthma, lung cancer and cardiovascular disease. Consequently,
major urban centers commonly monitor PM2.5 as part of their air quality manage-
ment strategies. The Chemical Transport models allow for a permanent monitoring
and prediction of pollutant behavior for all the regions of interest, different to the
sensor network where the concentration is just available in specific points. In this
chapter a data assimilation system for the LOTOS-EUROS chemical transport model
has been implemented to improve the simulation and forecast of Particulate Matter
in a densely populated urban valley of the tropical Andes. The Aburrá Valley in
Colombia was used as a case study, given data availability and current environ-
mental issues related to population expansion. Using different experiments and
observations sources, we shown how the Data Assimilation can improve the model
representation of pollutants.

Keywords: chemical transport model, air quality, data assimilation, LOTOS-
EUROS, low-cost networks
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1. Introduction

Air pollution is defined as the presence of solid, liquid or gaseous components in
the atmosphere that can cause risk and troubles for living beings or goods in
general. Air pollution is one of the major environmental problem in modern human
history [1]. Environmental pollution can be produced by natural or human actions.
Natural sources include forest fires, volcanic emissions, dust, sand, vegetation (as
pollen) and wildlife (as methane). The main human sources of air pollution are
industry, power generation, transportation, deforestation and cattle raising [2].

The current exponential growth in world population heightens the importance
of public health issues related to air quality [3, 4]. In developing countries, decision
makers must cope with the environmental demands of expanding and
overpopulated urban centers. Short term air quality forecasts and long term miti-
gation strategies for these centers are usually based on specialized assessments of
particulate matter dynamics [5, 6]. The Aburrá Valley houses the city of Medellín
and neighboring municipalities. It is the second most populous urban agglomeration
in Colombia, and the third densest in the world. The valley traces the course of the
Medellín River along 60 km of a deep mountain canyon that ranges in width
between 3 and 10 km, and with a height difference of up to 1800 m. Air quality
conditions deteriorate severely within the valley twice a year around the time of the
arrival of the Intertropical Convergence Zone (March–April, and with lower inten-
sity in October–November), when the atmospheric inversion layer persists
throughout the day below the rim of the canyon, thus trapping all of the urban
atmospheric contaminants within the lower atmosphere [7]. During these periods,
the concentrations of particulate matter below 10μm (PM10) and 2.510μm (PM2.5)
remain at levels considered hazardous for vulnerable populations and even for the
general population (Figure 1).

Due to the large stress on human health induced by this air pollution, efforts
have been made to monitor, reduce, and prevent episodes in which concentrations
of pollutants reach hazard levels. Before measures for reducing air pollution can be
implemented it is important to know the actual concentration levels and how these
evolve in time over the area of interest. This could be done using a Chemical
Transport Model (CTM) to simulate concentrations of trace gasses and particulate
matter [8, 9]. In the last 20 years, CTMs have seen a huge growth and development;
in consequence a diversity of models exists, differing in their complexity, size of the
region of study, and methods used for their development. CTMs can be broken
down in four categories according to their dynamic behavior: i) Gaussian, ii)

Figure 1.
Perspective of the air quality in the city of Medellín. (August 26, 2016, www.elmundo.com).
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statistic, iii) Lagrangian and iv) Eulerian [8]. Eulerian models are the most widely
used and reported for monitoring and predicting the pollution behavior and define
the air quality in bigger areas [9]. So, these are frequently used in areas with sizes
like countries or continents and have been less used in areas like cities.

Data assimilation (DA) is a mathematical process that provides integration
between measured values (observations) and a dynamic model, to improve the
operation of the model. With DA, the output value provided by the model has a
smaller error than the output value provided by the model without observations.
DA has two key objectives: to improve the operation in predictions of model states;
and estimate unknown parameters of the model [10]. DA has been tested in differ-
ent science fields such as oceanography, climatology, CTMs, and reservoirs charac-
terization [11]. DA allows integrating models and observations out different scales
of size and temporal sampling [12]. When two sources of information are com-
bined, DA assumes that both the model and the measurements are subject to errors.
These errors are impossible to know with accuracy and need to be specified in
statistical and probabilistic terms. DA is not only looking to reduce the model error
in space or time with observations; its mission is to digest the observation based on
the laws given by the model and to determine the dynamic evolution of the model
state that represents better measurements [13].

Large-scale model uncertainty, especially in CTM, is a very complicated issue.
Increasing the accuracy of initial conditions, such as accurate land cover represen-
tations or updated emissions inventories, or using observations and DA, may reduce
uncertainty. Data assimilation offers an alternative that is dynamically driven to
reduce the lack of knowledge about the behavior of air pollution. The addition of
surface, satellite, in situ, and laser-based remote sensing data to a model will
enhance the understanding of proper scenario simulation and online decision-
making. A bounty promise lies in the incorporation of the DA, not only for its
contribution to the reduction of uncertainty, but also for opening the door to air
quality forecasting in atmospheric pollution modeling. CTM forecasting presents us
with interesting and complex challenges associated with the uncertainty of weather
forecasting, the lack of precise inventory of emissions, and the scarcity and sparsity
of monitoring networks for air quality. Such challenges require creative solutions;
these challenges are opportunities for knowledge advancement. Due to the scarcity
of data and high uncertainty in the model inputs, a mathematical, analytical, and
computational effort is needed to push the frontiers of knowledge in the field.

Public air quality monitoring networks often consist of fixed measuring stations
equipped with expensive sensors and maintained under rigorous operational and
calibration regimes in order to provide high quality data. The high costs associated
with establishing and maintaining such stations means that not all cities in devel-
oping countries can afford monitoring networks of sufficient spatial coverage [14].
Even in large cities in developed countries, the official air quality monitoring net-
works do not always provide information at the spatial and temporal resolution
required to assess the impact of pollution sources on health [15], as the cost of the
equipment makes the necessary density prohibitive. In the metropolitan region of
Medellín (Colombia) and its con-urban municipalities for example, there are 21
main PM2.5 monitoring stations, at an average density of 8.25 km2 over the entire
area of the 10 municipalities. This has motivated the expansion and improvement of
low-cost systems and programs to measure PM [16]. The limited number of studies
that have evaluated newer generations of low-cost PM2.5 sensors have shown that
the most widely used low-cost sensors attain high accuracy when compared to
standard monitoring stations (R2 value ranging from 0.93 to 0.95) [17]. The data
provided by these sensors can complement those generated by conventional sys-
tems, increasing the data resolution and allowing studies of exposure at the human
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level [15, 18]. By data assimilation, the incorporation of air pollution data into CTM
increases the ability to grasp local and regional patterns and fill spatial coverage
gaps. Additionally, the combination of different sources of information and knowl-
edge (data and model) increases the robustness and reliability of low-cost observa-
tions [12, 19].

2. The ensemble Kalman filter

The Ensemble-Based DA is a family of methods that uses an ensemble to model
the statistics of the first guess (background). In each assimilation step, a forecast
from the previous model simulation is used as a first guess, using the available
observation this forecast is modified in better agreement with these observations.
Due to it is easily implemented, it is relatively low in computational costs (com-
pared with other DA techniques), and has a very general statistical formulation it
is one of the most widely used approaches for tackling real-time forecasting
problems [20].

The Ensemble Kalman filter (EnKF) is the main Ensemble-based DA method
[21]. Based on the Kalman Filter (KF) [22], EnKF is an alternative for nonlinear,
high-dimensional systems. EnKF essentially is a Monte Carlo Ensemble-based
method, based on the representation of the probability density of the state by an
ensemble of N model realizations. Each ensemble member is assumed to be a single
sample out of a distribution of the true state [23]. In the first step, a Monte Carlo
ensemble of the initial condition is generated to represent the uncertainty in the
initial condition. After that, and in the same way that the KF, the EnKF propagates
each ensemble using the state-space operator, this step is called forecast step. When
observations are available, the EnKF uses them to update each forecast ensemble
members and obtain the analysis ensemble, this step is named analysis step. The
update is proportional to the differences between the observations and the model
outputs, by a gain called Kalman Gain. Figure 2 shows a graphic representation and
a comparison between the KF and EnKF.

3. Forecasting PM10. And PM2.5. in the Aburrá Valley (Medellín,
Colombia) via EnKF based data assimilation

Understanding local and regional atmospheric particulate matter transport pat-
terns becomes a top priority for urban valleys in the northern Andes. This work will
help establish accurate air quality forecasting systems for the Aburr’a Valley (and
other similar areas) and improve decision-making. Chemical Transport Models
(CTM) are valuable resources for understanding atmospheric pollutants’ dynamics
and have thus been widely used in air quality monitoring [8, 9].

Here we use simulations of the LOTOS-EUROS (LE) chemistry transport model
(CTM) to investigate the atmospheric contaminant dynamics in the Aburr’a valley,
which spans ten municipalities, including Medellín city. The Sistema de Alerta
Temprana del Valle de Aburrá (SIATA), a ground-based sensor network with sta-
tions throughout the valley, can provide particulate material observations. A pre-
liminary exercise is carried out to assimilate these findings into the simulations and
assess the system’s forecast capacity. Due to the various sources of uncertainty
present, this implementation poses a challenge from a scientific standpoint. The
topography and scale of the valley and the physical conditions of the area of interest
necessitate an extra effort to perform a regional high-resolution model simulation.
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Model inputs (emission inventory and meteorology) are not readily available with
the desired resolution and accuracy, which adds to the experiment’s uncertainty.

3.1 Material and methods

A data assimilation method for the LOTOS-EUROS chemical transport model
has been introduced to boost the PM10 and PM2.5 forecasts. The system uses an
Ensemble Kalman filter with covariance localization, which is based on the specifi-
cation of emissions uncertainties. The data was gathered from a surface network for
the months of March and April 2016, during one of the region’s worst air quality
crises in recent memory. The SIATA is spread around the five most populous
municipalities in the Aburrá Valley, with the bulk of the measuring stations in
Medellín. Figure 3 represents the distribution of observation sites.

Measurements for one station for each species (represented with a star in
Figure 3) were used for validation, taking two stations with a considerable distance
between them to obtain a acceptable spatial representation.

In a first series of experiments, the spatial length scale of the covariance locali-
zation and the temporal length scale of the stochastic model for the emission
uncertainty were calibrated to optimize the assimilation system. The calibrated
system was then used in a series of assimilation experiments. The summarized
experimental setup is presented in the Figure 4.

Simulations were conducted with the LE model, adopting a nested domain
configuration as depicted in Figure 5 and detailed in Table 1. The data sets used in
the model are summarized in Table 2.

Figure 2.
Representation of Kalman filter (upper) and ensemble Kalman filter (lower).
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3.2 Results

Estimated PM10 emissions and EDGAR nominal emissions are shown in
Figure 6. The emissions hot-spots occur in rural zones with limited human activity
in the EDGAR database. The estimated emissions attempt to remedy this behavior
by projecting the most of the pollution into the metropolitan region of the valley
(Figure 6).

The assimilated PM10 concentration match closely those measurements at the
Universidad San Buenaventura (center of the valley) from April at 19:00 UTC-5
through April 25 at 11:00 UTC-5 (see Figure 7). The peak around 18:00 (and usually
all day up to that hour) may be unreliable, which may be because of EDGAR’s

Figure 3.
SIATA sensor network for PM10 and PM2.5. The stars represent observation points for validation and the circles
represent observations points for assimilation. Taken from [24].

Figure 4.
Graphic representation of the experimental setup. Taken from [24].
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temporal emissions factors. Additionally, concentrations can be increased by the
meteorological fields. Note that the daily cycle for the assimilated model remains
closer to the observations than the model without assimilation.

Figure 8 shows a similar comparison for the PM2.5 station. The model in a free
run tends to over estimate the PM2.5 concentrations (see peaks in 15 April at 23:00
UTC-5, 24 April at 22:00 and 25 April at 23:00 UTC-5). The results of the assimila-
tion process offer a better average estimation. The daily cycle of PM2.5 within the
Aburrá valley is related to the industrial and mobile sources emissions profile and
the meteorological conditions inside the valley.

Figure 5.
Four nested domains for metropolitan area of Aburrá Valley assesment. Taken from [24].

Domain Longitude Latitude Cell size

D1 84oW-60oW 8.5oS-18oN 0.27o � 0.27o

D2 80.5oW-70oW 2oN-11oN 0.09o � 0.09o

D3 77.2oW-73.9oW 5.2oN-8.9oN 0.03o� 0.03o

D4 76oW-75oW 5.7oN-6.8oN 0.01o� 0.01o

Table 1.
Nested domain specifications.
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3.3 Conclusions

Poor air quality is a current environmental problem in several Colombian cities.
To be prepared for air quality degradation requires accurate and reliable data for
decision-making in South America. This study shows that the LOTOS-EUROS
model can function in areas with more complex topography, such as the Abura
Valley, and encourages the development of fine-tuned weather forecasting systems
to support the target. The use of regional, ground-based pollutant data from the
SIATA sensor network, in the assimilation of the LOTOS-EUROS model, enhanced
the PM10 and PM2:5 representation.

4. Urban air quality modeling using low-cost sensor network and data
assimilation in the Aburrá Valley, Colombia

Public air quality monitoring networks frequently consist of fixed measuring
stations equipped with expensive sensors and maintained under strict operational
and calibration regimes. Because of the high costs of setting up and maintaining

Period 31-March-2016 to 25-April-2016

Metereology ECMWF; Temp.res: 3 h; spat.res: 0:07∘ � 0:07∘

Initial and boundary LOTOS-EUROS (D3). Temp.res: 1 h.

conditions Spat.Res: 0:03∘ � 0:03∘

Anthropogenic emissions EDGAR v4.2. Spat.res:10 km � 10 km

Biogenic emissions MEGAN Spat.res:10 km � 10 km

Fire emissions MACC/CAMS GFAS Spat.res:10 km � 10 km

Landuse GLC2000. Spat.res:1 km � 1 km

Orography GMTED2010. Spat.res: 0.002o � 0.002o

Table 2.
Data set used in the D4 domain.

Figure 6.
Comparison between EDGAR PM10 and estimated PM10 emissions. Taken from [24].
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such stations, not all cities in developing countries can afford monitoring networks
with sufficient spatial coverage [14]. Even in developed cities, official air quality
monitoring networks do not always provide information at the spatial and temporal
resolution required to assess the impact of pollution sources on health, [15], due to
the equipment’s high cost. This has prompted the development and improvement of
low-cost PM measurement systems and programs. According to [17], a small num-
ber of studies evaluating newer generations of low-cost PM2.5 sensors have found

Figure 7.
PM10 validation for the second DA iteration. Estimated emissions were used as nominal emissions, the estimated
observation error covariance is used in the assimilation step. Red points are observations, solid black line is the
free run model and the solid blue line is the analysis step for the assimilated model. The diurnal cycles were
obtained from 13 samples for each hour. The shadows and the bars represent the standard deviation of the 13
samples. The time axis corresponds with the local time zone UTC-5. Taken from [24].

Figure 8.
PM2.5 validation for the second DA iteration. Estimated emissions were used as nominal emissions, the
estimated observation error covariance was used in the assimilation step. Red points are observations, solid black
line the free run model and solid blue line the analysis step for the assimilated model. The diurnal cycles were
obtained from 13 samples for each hour. The shadows and the bars represent the standard deviation of the 13
samples. The time axis corresponds with the local time zone UTC-5. Taken from [24].
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that the most widely used low-cost sensors achieve high accuracy when compared
to standard monitoring stations (R2 values ranging from 0.93 to 0.95). The data
collected by these sensors can be used to supplement that collected by traditional
systems, increasing data resolution and allowing studies of human exposure
[15, 18].

Using techniques like data fusion or data assimilation to integrate observations
from dense networks of low-cost sensors into mathematical models allows for a
spatially continuous representation of concentration fields with significantly
reduced bias citeLahoz2014. By spatially interpolating between monitoring loca-
tions and constraining the model with observations, these techniques add value to
the sensor observations while also adding value to the model [17, 18, 25]. Both
sources of information can thus be combined in a mathematically objective manner
to reduce the uncertainty inherent in both sources [12]. Although data assimilation
is a more complex family of methods than data fusion or interpolation techniques, it
is the most versatile and robust of these approaches. The goal of evaluating the data
from the low-cost sensor network as an alternative to monitoring PM2.5 concentra-
tions in developing countries is to see if it is viable.

4.1 Material and methods

The SIATA project operates the official high-end air quality monitoring network
(henceforth official network, and a hyper-dense, low-cost air quality network devel-
oped within the Citizen Scientist program (henceforth low-cost network).

The low-cost network was created with the aim of engaging the community in
issues surrounding air quality, and as an extension of the official network. The low-
cost network consists of 255 real-time PM2.5 (Figure 9, panel b).The measuring
equipment was developed by SIATA based on the well-known low-cost Shinyei
PPD42NS, NOVA SDS011, and Bjhike HK-A5 sensors [27]. Each low-cost sensor is
calibrated individually against BAM-1020 measurements [27]. The calibration pro-
cess showed the measurements of 91% of the low-cost sensors with correlation
values above 0.6 against the official measurements, and 67% with values above 0.8.

Figure 9.
Spatial distribution of the hyper-dense low-cost network citizen scientist and official monitoring air-quality
network for PM2.5. The gray raster represent the LOTOS-EUROS model grid. Taken from [26].

10

Environmental Sustainability - Preparing for Tomorrow



The median of the root mean square error showed a value of 6.2 μg=m3, with a
tendency to decrease for higher concentrations [27]. The low-cost network thus rep-
resents satisfactorily the dynamics of PM2.5 concentrations in the Valley’s atmosphere.

An anthropogenic urban emissions inventory for 2016 specific to Medellín and
the other nine municipalities of the Aburrá Valley was used for the simulations on
the D4 domain. The construction of the inventory followed a bottom-up methodol-
ogy, combining activity data (traffic intensities, industrial production) with emis-
sion factors. Only traffic and industrial point sources were considered, without
accounting for neither household nor commercial emissions [28].

The emission inventory was disaggregated over the Aburrá Valley (76oW-75oW
and 5.7oN-6.8oN) at a resolution of 0.01o � 0.01o (approximately 1 km � 1 km),
using a method based on road density as in [29]. The road network map was
obtained from the OpenStreetMap database [30], and simplified by removing seg-
ments classified as residential, as recommended in [31, 32]. The simplification of the
road network can reduce errors in the spatial disaggregation since residential roads
correspond to a high portion of the road network length but carry a low percentage
of total vehicular traffic. The point-source emissions were distributed on the grid
using their known location [28]. Figure 10 shows the resulting emissions maps for
PM2.5 and PM10.

Two sets of low-cost sensors data were assembled: The first one included 255
sensors from the low-cost network that had a station from the official network
within a 2-km radius. The second, higher quality one consisted of a subset of the
previous set, including only those sensors whose data showed an R value equal or
greater than 0.8 when evaluated against the official network.

We performed four different LOTOS-EUROS simulations:

1.a LOTOS-EUROS model simulation without data assimilation (henceforth
LE);

2.a simulation with assimilation of data (observations) from the 14 stations of
the official network (henceforth LE-official;

3.a simulation with assimilation of the data from the entire low-cost network
(henceforth LE-lowcost)

Figure 10.
Local particulate matter emission inventories for the Aburrá Valley: (a) PM2.5, and (b) PM10. The values
correspond with the estimated annual emissions. Taken from [26].
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4.a simulation with assimilation only of high-quality data from the low-cost
network (henceforth LE-lowcost-HQ).

4.2 Results

The concentration fields were evaluated using seven of the official monitoring
stations (validation stations. Figure 11 shows the temporal series for the simulated
and observed PM2.5 concentrations at four of the validation stations. The four
selected stations represent downtown Medellín (station 25), residential areas (sta-
tion 86), areas with high vehicular flow (station 88), and a peri-urban area in the
outskirts of the city (station 85). Those stations summarize the behavior of all seven
validation stations. The LE simulation consistently underestimated the concentra-
tions observed at stations 85 and 88. At stations 25 and 86, the LE simulation results
were close in magnitude between February 24 and March 3 and March 10 to March
15; between March 3 and March 10, the model presented values much lower than
those observed. The day-to-day variability was reduced for this same period, as seen
in stations 85 and 86. This inconsistent behavior suggests a poor representation of
the meteorological dynamics that govern the dispersion and accumulation of PM2.5

within the valley. Simulations using data assimilation showed noisier behaviors than
the LE simulation. This process is commonly observed when applying the EnKF and
obeys the stochastic nature and the handling of uncertainty inherent to the method
[21]. However, those simulations managed to correct the large discrepancies present

Figure 11.
Temporal series of PM2.5 concentrations from selected validation stations of the official network, LOTOS-
EUROS without assimilation, LE-official, LE-lowcost and LE-lowcost-HQ. Time stamps are valid for local
time (UTC-5). A spin-up of 5 previous days was taken for each simulation. Taken from [26].
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in the LE simulation. Both LE-official, LE-lowcost, and LE-lowcost-HQ represented
more accurately the day-to-day variability of the observations than LE. In general
terms, there was no evidence of a sizeable and persistent difference among the
simulations with data assimilation throughout the entire period. Nevertheless, the
LE-lowcost-HQ simulation reproduced with greater accuracy the concentrations
observed in different periods, such as between February 26 and March 4 in station
25, between March 9 and March 14 in stations 85 and 86.

Figure 12 shows the diurnal cycles during the simulation period in the four
selected validations stations. The diurnal cycle of the LE simulation differed from
the observations in both magnitude and temporal behavior. The highest concentra-
tion peak that appears around 09:00 in all the stations is mainly due to traffic
dynamics. In stations 25 and 88, the LE morning peak corresponded in time but not
in magnitude with the observations; in stations 85 and 86, said peak appeared later
in the simulations than in the observations. This time lag suggests a poor spatial
representation of mobile emissions by the emissions inventory; or a deficiency it the
wind fields in reproducing the valley dynamics, showing a late transport of the
particulate material to these areas. The LE simulation did not capture the evening
peak shown by the observations around 21:00 hours. The simulations using data
assimilation presented diurnal cycles closer to the observations than did the LE
simulation. The LE-official simulation captured the time and magnitude of the
morning peak in stations 85 and 86. In station 88, LE-official corrected the time lag
in the morning peak seen in LE, and improved the estimated magnitudes albeit still
falling short of the observed values. A different behavior was seen for station 25,

Figure 12.
Diurnal cycle of PM2.5 concentrations from selection stations of the official network, LOTOS-EUROS without
assimilation, LE-official, LE-lowcost and LE-lowcost-HQ. The bars and the shadows represent the standard
deviation over the simulation period. The time stamps are valid for local time (UTC-5). Taken from [26].
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where LE-official had low diurnal variability, with a slight underestimation in the
morning, and an overestimation in the afternoon. The LE-lowcost and LE-lowcost-
HQ simulations results resembled closely the diurnal behavior of the observations,
especially the temporal component. In all the stations, both the morning and the
evening peaks matched the observations. The observed concentrations for stations
25 and 88 fell inside the standard deviation range for the LE-lowcost simulation; the
same simulation overestimated the concentrations between 11:00 and 19:00 for
station 85, and underestimated the concentrations between 01:00 and 13:00 for
station 86. The LE-lowcost-HQ simulation results were overall the closest to obser-
vations.

The averaged evaluation statistics among all the validation station are shown in
Table 3. The simulation results without data assimilation (LE) underestimated the
observed concentrations in all the validation stations. This was also seen in previous
related works [24, 33]. The RMSE value reflected a low correspondence between the
observed and simulated concentrations when using the model without data assimi-
lation. The correlation coefficient was low, meaning that the model was not able to
capture the variations in diurnal and day-to-day concentrations. In contrast, the
three simulations using data assimilation had MFB values close to 0, without a
significant difference among them. The data assimilation was thus effective in
reducing between the model and reality. The RMSE also improved when using data
assimilation, decreasing by 24.4% in the LE-official, 32.8% in the LE-lowcost, and
36.2% in the LE-lowcost-HQ simulations relative to the RMSE of the LE simulation.
The R values were all above the criteria of good performance according with [34]
Table 2, and based in [35, 36]. Assimilation of either data set from the low-cost
network resulted in improved error statistics when compared to the LE-official
simulation.

4.3 Conclusions

We present a data assimilation application of a hyper-dense low-cost PM net-
work and the chemical transport model LOTOS-EUROS in a urban setting. The low-
cost network provided high quality data comparable to those provided by the
official monitoring network. The performance of the model with assimilation of the
spatially-dense data from the low-cost network improved both in terms of its
representation of the observed dynamics, as well as in its forecast capabilities,
highlighting its value as an air-quality management tool. Our results support the
idea than with the current advances in the low-cost sensors, it is possible to use low-
cost networks and data assimilation to model and predict air quality in urban areas.

Jointly with previous work [15, 18, 25, 37–39], our results can support and
motivate the development of future low-cost networks and their integration in data
fusion applications. According to the literature, North America, Europe, and China

MFB RMSE R

LE �0.65 27.38 0.42

LE-official �0.07 20.69 0.64

LE-lowcost 0.08 18.39 0.76

LE-lowcost-HQ 0.06 17.46 0.82

Table 3.
Mean fractional bias, root mean square error and Pearson correlation coefficient for simulated PM2.5. Values
are averaged over all the validation stations for the simulation period.
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concentrate most of the current low-cost implementations, with experimental, cit-
izen, and data dissemination purposes [14, 40]. In developing countries, a low-cost
network, together with a CTM and data assimilation can provide a valuable first
approach to monitoring PM without the high cost of an official air quality network.

Although one of the main advantages of a low-cost networks is the possibility of
implemented hyper-dense networks with relative low costs, it is recommended to
prioritize in the quality of the data (sensor quality, calibration, maintenance) and
the study of optimal localization. High quality and the correct number and localiza-
tion of sensors improve the data assimilation process and minimizes operational and
computational costs.
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