
Weierstraß-Institut
für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 – 8633

Two-particle models for the estimation of the mean
and standard deviation of concentrations in coastal

waters

Daria Spivakovskaya1, Arnold Heemink,1John Schoenmakers2

submitted: 6th January 2006

1 Delft University of Technology,
Department of Mathematical Physics,
Delft Institute of Applied Mathematics (DIAM),
Mekelweg 4, 2628 CD Delft, The Netherlands,
E-Mail: d.spivakovskaya@ewi.tudelft.nl,
A.W.Heemink@ewi.tudelft.nl

2 Weierstrass Institute for Applied Analysis and Stochastics,
Stochastic Algorithms and Nonparametric Statistics,
Mohrenstraße 39, D – 10117 Berlin, Germany,
E-Mail: schoenma@wias-berlin.de

No. 1088
Berlin 2006

� � � �

2000 Mathematics Subject Classification. 62G07, 60H10, 65C05.

Key words and phrases. Advection-diffusion equation, Lagrangian models, two-particle model.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
10117 Berlin
Germany

Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

In this paper we study the mean and standard deviation of concentrations
using random walk models. Two-particle models that takes into account the
space correlation of the turbulence are introduced and some properties of the
distribution of the particle concentration are studied. In order to reduce the
CPU time of the calculation a new estimator based on reverse time diffusion is
applied. This estimator has been introduced recently by [18]. Some numerical
aspects of the implementation are discussed for relative simple test problems
and finally a realistic application to predict the spreading of the pollutant in
the Dutch coastal zone is described.

1 Introduction

Ship accidents have caused recently a number of serious ecological catastrophes in
coastal zones. In order to reduce the possible damage for the environment it is
very important to accurately predict the possible concentrations of the pollutant.
In many situations it is enough to know only the ensemble mean concentration,
especially for long term prediction problems. For these kind of problems one can
adopt an Eulerian approach and study the transport of the pollutant with the help
of a numerical approximation of the advection-diffusion equation. However, serious
numerical difficulties may occur with positiveness and mass conservation, especially
if the initial concentration is a delta-like function ([27], [31], [9]).

Another approach is random walk modeling ([11]). In this approach the advection-
diffusion equation is interpreted as a Fokker-Planck equation and as a result it is
possible to derive an Îto stochastic differential equation for the behavior the individ-
ual particles of the pollutant. By numerical integration of this stochastic differential
equation, the behavior of many different particles can be simulated and the trans-
port of the pollutant can be described ([11], [7], [23], [29]). One of the advantages
of random particle models is that it is a natural way to study not only the mean
ensemble concentration, but also higher order moments of the concentration. For
instance, the standard deviation of the concentration is connected with the statistics
of the trajectories of pairs of particles. The idea of using two-particle simulation
to obtain the standard deviation of the concentration was first formulated by [5].
More recently a number of papers in which Lagrangian models have been applied
to investigate the standard deviation of the concentration have been published ([4],
[13], [15], [30]).

1



Using particle models the concentration distribution of the particles is equivalent
with the probability density function of the particles. Thus the simulation of the
positions of many particles is equivalent to find the probability density function.
This Monte Carlo approach is conceptual very easy and can be applied for many
different types of (highly nonlinear) problems. However, Monte Carlo techniques do
consume a large CPU time, while the accuracy of the estimates improves very slowly
for larger sample size. Especially in case we only want to determine the particle
density at a few critical locations, most of the realizations of the particle tracks do
hardly contribute to the final results. The efficiency of Monte Carlo methods can be
improved by variance reduction, [14], [19], [22], [6], [17]. The most efficient methods
of variance reduction require the analytical solution of the backward Kolmogorov
equation. In many applications, however, a numerical solution is required. For high
dimensional systems this may become very time consuming [22].

Recently [18] introduced the concept of reverse time diffusion. The classical Monte
Carlo estimator is based on forward realizations of the original stochastic model.
[18] derived a reverse system from the original model and showed that the classical
Monte Carlo estimator can also be based on realizations of this reverse system. For
many problems it is more efficient to use realizations of the reverse system instead of
the original forward model. The most efficient implementation is, however, obtained
if the forward realizations and the reverse system realizations are combined. This is
called the forward reverse estimator.

In this paper the multiple particle model is formulated and the forward reverse
estimator is applied for the estimation of the mean ensemble concentration and the
standard deviation of the concentration of the pollutant at a number of given critical
locations. In section 2 we describe the particle model that is used for the simulation
of the pollutant. The multiple particle models is introduced in section 2.2. In
section 3 we consider the different estimators for the probability density function. In
section 4 we discuss some properties of the distribution of the concentration for a test
problem. Finally in section 5 we describe an application of the two-particle model
and the forward reverse estimator to calculate the mean and standard deviation of
the concentration of a pollutant in the Dutch coastal waters.
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2 Random walk models for modeling dispersion in
shallow water

2.1 One-particle model

The ensemble mean concentration of the pollutant released at time t at the position
x can be obtained from the advection-diffusion equation ([10], [25])

∂C

∂s
+

∂(u1C)

∂y1
+

∂(u2C)

∂y2
+

∂(u3C)

∂y3
=

∂

∂y1

(
D1

∂C

∂y1

)
+

∂

∂y2

(
D2

∂C

∂y2

)
+

∂

∂y3

(
D3

∂C

∂y3

)
C(t, y) = δ(x − y)

(1)

where C(s, y) is the mean ensemble concentration in point y and at time s, x, y ∈
IR3, u = (u1, u2, u3)

T is the velocity vector, D1, D2 and D3 represent the dispersion
in the y1, y2 and y3 directions respectively. We can also use the vertically-integrated
advection-diffusion equation ([25])

∂(CH)

∂s
+

∂(u1HC)

∂y1
+
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∂y2
=

∂
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(
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∂y2

)
,

C(t, y) = δ(x − y),

(2)

where H is water depth, D is now the horizontal dispersion coefficient, and x, y ∈
IR2. One way to solve the equation (2) is to use particle models ([11]). By introducing
a new function p = HC, the equation (2) can be rewritten in the form:

∂p

∂s
= − ∂

∂y1

((
u1 + ∂D

∂y1
+ D

H
∂H
∂y1

)
p
)
−

∂

∂y2

((
u2 + ∂D

∂y2
+ D

H
∂H
∂y2

)
p
)

+
∂2(Dp)

∂(y1)2
+

∂2(Dp)

∂(y2)2
,

p(t, x, t, y) = δ(x − y).

(3)

The equation (3) can be interpreted as a Fokker-Planck equation for the transi-
tion density function p(t, x, s, y) of some underlying stochastic process X(s). This
stochastic process is the solution of the following system of Îto stochastic differential
equations

dX(s) =

(
u +

∂D

∂y
+

D

H

∂H

∂y

)
ds +

√
2DI2dB(s),

X(t) = x,
(4)

where X = (X1, X2)
T is 2-dimensional stochastic process, B = (B1, B2)

T is 2-

dimensional Brownian motion, ∂
∂y

=
(

∂
∂y1

, ∂
∂y2

)T

is the spatial gradient and I2 is
2 × 2 identity matrix. As a result estimating the ensemble mean concentration
of the pollutant now becomes the problem of estimating the probability density
function p(t, x, s, y) of the stochastic process X(s).
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2.2 Multiple particle model

In the previous section we have introduced one-particle models that do not take into
account the spatial correlation of the particle behavior and therefore allows only for
estimating the ensemble mean concentration. However, the turbulent behavior of
particles is correlated in space. As a result the actual concentration at certain
locations may be much higher or lower than the ensemble mean concentration. For
instance, the ensemble mean concentration may be an average of a large number
of zeros (realizations when the cloud of pollutant do not reach the location) and a
few very large values. This type of averaging may be meaningless, because the few
high concentrations may kill the organisms in a certain area and the large number
of zeros can not bring them to life again.

So if we want to describe the dispersion process in more detailed we must use
multiple particle models ([2]). In a K-particle model, K particles are released at
the same time and their behavior is correlated with each other. The correlation
between any two-particles is assumed to depend only on the distance between them.
Over large distances particles behave almost independent, but when the distance is
close to zero the behavior of the particles is highly correlated. A problem is how
to separate the particles when the distance is close to zero. According to [30] we
should include the effect of the molecular diffusion. In one-particle models the effect
of molecular diffusion is negligible compared with the turbulent diffusion, but in
multiple particle models the molecular diffusion plays a significant role. Moreover,
if the particles coincide, they can only separate again by the molecular diffusion.
However, once the particles have separated up to a certain distance d any further
separation is caused mainly by the turbulent diffusion. A discussion about this
distance d can be found in [30]. As a result, we propose to write the equation (4) in
the form

dX(s) =

(
u +

∂D

∂y
+

D

H

∂H

∂y

)
ds+

√
2DI2

(√
1 − β2dB(s) + βdW (s)

)
,

X(t) = x,

(5)

where 0 ≤ β ≤ 1 is constant, B is a standard Brownian motion as in the one-particle
model, and W is a 2-dimensional correlated Brownian motion independent of B.
In (5),

√
1 − β2B(s) represents the diffusion caused by the molecular diffusion and

the small scale turbulence and βW (s) represents large scale turbulence.

Now we are ready to introduce the K-particle model. The behavior of K parti-
cles can be described by the following 2K-dimensional systems of the stochastic
differential equations

dX [i](s) =

(
u[i] +

∂D

∂y[i]
+

D

H [i]

∂H [i]

∂y[i]

)
ds+

√
2DI2

(√
1 − β2dB[i](s) + βdW [i](s)

)
,

X [i](t) = x.

(6)
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With the superscript [i], i = 1, . . . , K we indicate the functions that depend on the
ith particle X [i]

u[i] = u(s, X [i])

H [i] = H(X [i])

The Brownian motion processes B[i](s) are mutually independent, while any pair
processes W [i] and W [j], (i �= j) is correlated with covariance matrix

E
(
W [i](ds)W [j](ds)T

)
= f(rij)I2ds, (7)

where f(r) is a covariance function that depends on the distance r between particles
X [i] and X [j],

rij = ‖X [i] − X [j]‖
The covariance function is related to the spectrum of the turbulence. We assume
that the correlation function f satisfies several conditions. First of all, we assume
that this function is sufficiently smooth, at least its second derivative is continuous
and bounded. We further assume that

1. f(0) = 1

2. f(r) ↓ 0, r → ∞
3. The matrix [f(‖yi−yj‖)]1≤i≤q,1≤j≤q is positive definite for any choice of points

y1, . . . , yq in R
2

For example, we can use the following function ([8])

f(r) = exp(−αr2), α > 0 (8)

2.3 The standard deviation of the concentration

Multiple particle models may be used to find the distribution of the concentration.
However this approach is very time consuming. Two-particle models can be used to
find mean and standard deviation of this concentration distribution. The behavior
of a pair of particles is described by equation (6) for K = 2. The probability density
function p(t, x, x, T, y[1], y[2]) (or the joint probability function of the stochastic
processes X [1] and X [2]) gives us the information about the standard deviation of
the concentration.

Let us consider the neighborhood of the point y

Oε(y) = {(ỹ1, ỹ2) : |ỹ1 − y1| < ε, |ỹ2 − y2| < ε}.
The probability that two particles X [1] and X [2] will occur in Oε(y) is given by
P (t, x, x, T, Oε(y), Oε(y)). The value

1

μ2(Oε(y))
P (t, x, x, T, Oε(y), Oε(y)) =

1

ε4
P (t, x, x, T, Oε(y), Oε(y))

(9)
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is the concentration of the pairs of particles (X [1], X [2]) in Oε(y). Here μ(Oε(y))
is the area of the neighborhood Oε(y). When the particles (X [1] and X [2]) are
independent this concentration can be found as(

1

μ(Oε(y))
P (t, x, T, Oε(y))

)2

=

1

ε4
P 2(t, x, T, Oε(y)).

(10)

The difference between the values (9) and (10)

c2(T, Oε(y)) =
1

ε4
|P (t, x, x, T, Oε(y), Oε(y)) − P 2(t, x, T, Oε(y))| (11)

gives us the information about the fluctuation of the concentration in Oε(y). Proceed
to the limit when ε → 0 we will receive the value c2(T, y) at the point y

c2(T, y) = |p(t, x, x, T, y, y) − p2(t, x, T, y)| (12)

In [5] it is shown that the fluctuation defined by (12) leads to a slightly lower con-
centration fluctuation than the usual definition and can be used as a measure of the
fluctuation amplitude. Taking into account that we use the depth averaged model
and that the concentration of the pollutant is connected with the density probability
function as C(T, y) = p(t, x, Y, y)/H(y) we define the standard deviation Dev(T, y)
at the point y at time T with the help of the following equation

Dev(y, T ) =
1

H(y)

√
c2(T, y) =√∣∣∣∣p(t, x, x, T, y, y)

H2(y)
− C2(y, T )

∣∣∣∣ (13)

In section (4.3) we study some properties of the concentration distribution for a
relatively simple example.

3 Density estimators for the stochastic differential
equations

3.1 Numerical integrating of the stochastic differential equa-
tions

Let us consider the stochastic differential equation defined in the Ito sense:

dX(s) = a(s, X)ds + σ(s, X)dB(s), t ≤ s
X(t) = x

(14)
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where X = (X1, . . . , Xd)
T . a = (a1, . . . , ad)

T are d-dimensional vectors, B =
(B1, . . . , Bm)T (m ≥ d is a m-dimensional Wiener process and σ = {σij} is a d×m
matrix. We assume that the d × d matrix b = σσT is of full rank for every (s, x),
s ∈ [t, T ], x ∈ IRd. We also assume that the functions ai(s, x) and σij(s, x) and their
first derivatives are continuous and bounded. This implies existence and uniqueness
of the solution X t,x(s) ∈ IRd, X t,x(t) = x of (14), smoothness of the transition den-
sity p(t, x, s, y) of the Markov process X and existence of all the moments p(·, ·, ·, y)
([1], [21], [12]). In general equation (14) can not be solved analytically, so we must
use a numerical method to find the approximation X(T ) of the realization of the
stochastic process X(T ) at time T (t < s < T ). One of the more frequently used
numerical methods is the Euler method ([14], [19])

X
h

k+1 = X
h

k + a(s, X
h

k)h + σ(s, X
h

k)ΔBk,

X
h

0 = x,
(15)

where k = 0, 1, . . . , L − 1, X
h

k = X
h

t,x(sk) is the numerical approximation of the
position Xh

t,x(sk), sk = t+kh, h = (T−t)/L is time step of the numerical integration,
ΔBk are mutually independent Gaussian variables with zero mean and covariance
matrix hIm (Im is the m × m identity matrix. In many cases we do not need to
know the realizations of the stochastic process X, but the value of the functional

U = Eg(X(s)). (16)

To find this functional one can use the extrapolation method which is based on the
Euler method. First one can apply the Euler approximation X

h generated by (15)
with time step h to simulate the functional U

h
= Eg(X

h
(s)). One can then simulate

the functional U
2h

= Eg(X
2h

(s)) for the double time step 2h, and finally the two
results are combined to yield the approximation of (16)

U = 2U
h − U

2h
.

This method was proposed by [28].

3.2 The transition density estimator based on forward diffu-
sion

In this chapter we consider the transition density estimator that is based on the
forward system (14).

Suppose it is required to calculate the transition density function p(t, x, T, y) of the
stochastic process X(s). This function can be found from the Fokker-Planck (or
forward Kolmogorov) equation

∂p

∂s
=

1

2

d∑
i,j=1

∂2

∂yi∂yj
(bijp) −

d∑
i=1

∂

∂yi
(aip),

p(t, x, t, y) = δ(x − y)

(17)
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or from the backward Kolmogorov equation

∂p

∂t
= −1

2

d∑
i,j=1

bij
∂2p

∂xi∂xj
−

d∑
i=1

ai
∂p

∂xi
,

p(T, x, T, y) = δ(x − y)

(18)

Another approach to estimate the density function p(t, x, T, y) is to use standard
methods for non-parametric statistics ([24], [32]). For instance, a kernel density
estimator with kernel function K and bandwidth is given by

p̂(t, x, T, y) =
1

Nδd

N∑
n=1

K

(
X

(n)

t,x(T ) − y

δ

)
, (19)

where X
(n)

t,x(T ) are samples from the stochastic process X t,x at a given point T .

The estimation loss |p̂ − p| of the estimator (19) can be split into an error due to
numerical approximation X t,x of the stochastic process X t,x and an error due to
the kernel estimator. The loss of the first kind can be reduced by selecting a higher
order scheme of numerical integration and choosing a small step of integration. The
second error depends on the choice of the sample size, the kernel function K(·) and
bandwidth δ. Popular choices of kernel functions are the Gaussian function

K(x) = (2π)−d/2exp

(
−1

2
xT x

)
(20)

and the Epanechnikov symmetric multivariate kernel

K(x) =
1

2
ν−1

d (d + 2)(1 − xT x)1xT x≤1 (21)

where νd = 2πd/2/{dΓ(d/2)} is the volume of the unit d-dimensional sphere. The
most important loss, however, is caused by the choice of the bandwidth δ. Even
an optimal choice of the bandwidth leads to quite poor estimation quality, in par-
ticular for large dimensional d. It is well known ([24], [32]) that if the underlying
density is two times continuously differentiable then the optimal bandwidth is of
order O(N−1/(4+d)) and the accuracy of the estimator has the order O(N−2/(4+d)).
For d > 2 this would require a huge sample size for providing a reasonable accuracy
of estimation. The simulation can be improved by using the general form of the
kernel function

p̂(t, x, T, y) =
|H|− 1

2

N

∑
n

K
(
H−1/2(X

(n)

t,x(T ) − y)
)

, (22)

where H is a symmetric positive definite d×d matrix called the bandwidth matrix.
This matrix can be chosen in the form

H = δ2S,

where S is a sample matrix. This approach allows to take into account the correla-
tion between the components of the stochastic process X t,x(s). However, the order
of accuracy remains the same and it makes high dimensional models inefficient for
real life application.
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3.3 Representations relying on reverse diffusion

In the previous section we described the estimator based on forward system. Another
approach is based on the so called reverse time diffusion and has been introduced
by [29]. The main idea of the reverse time approach is that the forward Kolmogorov
equation (17) can be considered as a backward Kolmogorov equation (18) connected
with the stochastic process (Y ,Y) in IRd+1, hence in a space of one dimension higher.

We first introduce a reverse time variable s̃ = T + t − s, t ≤ s̃ ≤ T and define the
functions

ãi(s̃, ỹ) = ai(T + t − s̃, ỹ),

b̃ij(s̃, ỹ) = bij(T + t − s̃, ỹ).
(23)

For a stochastic process Y t,y(s̃) ∈ IRd and a scalar process Yt,y(s̃) we then consider
the system of stochastic differential equations

dY = α(s̃, Y )ds̃ + σ̃(s̃, Y )dB̃(s̃),
dY = c(s̃, Y )Yds,
Y (t) = y, Y(t) = 1

(24)

with B̃ being an m-dimensional standard Wiener process and

αi(s̃, ỹ) =
d∑

j=1

∂b̃ij

∂ỹj
− ãi,

c(s̃, ỹ) =
1

2

d∑
i,1=1

∂2b̃ij

∂ỹi∂ỹj
−

d∑
i=1

∂ãi

∂ỹi

(25)

It can be proved (for example, [18], [16]) that the transition density function
p(t, x, T, y) has the following probabilistic representation

p(t, x, T, y) = EYt,y(T ).

As a result, it is possible to construct the density estimator based only on the reverse
time system (24)

p̂(t, x, T, y) =
1

Mδd

M∑
m=1

K

(
x − Y

(m)

t,y

δ

)
Y (m)

t,y (T ), (26)

where (Y
(m)

t,y ,Y(m)

t,y ), m = 1, . . . , M is an independent identically distributed (i.i.d.)
sample of numerical solutions of system (24)

3.4 The forward-reverse density estimator

In this section we discuss a new estimator based on both the forward system (14) and
the reverse time system (24). This estimator is called the forward-reverse estimator
and has been recently introduced by [18]. By taking advantage of the forward
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Table 1: Accuracy of the density estimators
Estimator bandwidth δ Accuracy

FE/RE O(N− 1
4+d ) O(N− 2

4+d )

FRE, d < 4 O(N− 1
d log

1
d N) O(N− 1

2 )

FRE, d ≥ 4 O(N− 2
4+d ) O(N− 4

4+d )

and reverse-time systems via the Chapman-Kolmogorov equation with respect to an
intermediate time t∗ one can obtain the following estimator

p̂(t, x, T, y) =

1

MNδd

N∑
n=1

M∑
m=1

K

(
X

(n)

t,x(t∗) − Y
(m)

t∗,y(T )

δ

)
Y (m)

t∗,y(T ).
(27)

In this equation t∗ is an arbitrary point from the time interval [t, T ]. If the t∗ = T
the forward-reverse estimator collapses to the pure forward estimator (19) and if we
take t∗ = t we will obtain the reverse estimator (26). In table (1) the accuracy of the
forward estimator (FE), the reverse estimator (RE) and forward-reverse estimator
(FRE) are shown. Here, we assume that N = M in equation (27) and that we use
a second order kernel K(·).

4 Test problem

In this section first we study the pure dispersion process with zero velocity vector
u = 0, constant water depth H = 1m and constant dispersion coefficient D =
5kg/m3. The domain of interest (see figure 4.1) is scaled with the grid size DX.
The constant β =

√
0.9 (see the equation(5)) .

4.1 100-particle model

Figure (2) shows an example of a simulation of the dispersion process for a 100-
particle model after 1, 3 and 7 days (figures (a), (c), (e)) with the correlation function
(8), α = 5/(DX ∗ DX) and a one-particle model with 100 realizations (figures (b),
(d), (f)). If we repeat the simulation many times and then average, the center
of the cloud of particles will be in the origin for both the multiple and the one-
particle models. However, from figures 2(a) and 2(c) it is seen that the center of the
individual clouds can diverge from the origin. If we wait long enough the center of
each cloud will tend to return the origin (figure 2(e)).

Suppose we want to know the distribution of the concentration in the square Ω0 =
[−0.2DX, 0.2DX] × [−0.2DX, 0.2DX] (see figure 4.1) after 2.5 days. We release
100 particles in the origin x = 0 and fix the number of particles that occur in this

10



−2.2DX  2.2DX
−2.2DX

 2.2DX

The square in which we search        
the distribution of the concentration
(see figure 3)                       

The squares in which we search   
the mean and the variamce of     
the  concentration (see figure 4)
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Ω3 

Ω
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Ω
1
 

Ω
0
 Ω

−1

Ω
−2

 

Ω
−3

Ω
−4

 

Ω
−5

 

Figure 1: The domain of test problem

square after 2.5 days. Figures 3(a), (b) and (c) show the concentration distribution
for different values of parameter α (α = 1/(DX ∗ DX), α = 5/(DX ∗ DX) and
α = 10/(DX ∗ DX)). In figure 3 (d) all these distributions are shown together and
can be compared with each other. It is clear that by increasing the parameter α, the
number of observations with ßeroconcentration decreases and therefore the standard
deviation of the concentration goes down (see figure 4(b)).

Usually one is only interested in the ensemble mean and the standard deviation
of the concentration. The diffusion process in this test case is symmetric in all
directions (it means that the concentration at some point depends only on the
distance between this point and the origin). Therefore, we study the mean and
the standard deviation of the concentration not in the whole domain, but only in
the squares Ωi, i = −5, . . . , 5. On figure 4 it is shown that the standard deviation
decreases, when the value of α increases.

We are also interested how the distribution of the concentration changes with time.
According to the theory (see, for example, [10],[20]) the difference between correlated
and independent simulations of the particle spreading becomes less if time increases.
In the next experiment we fix the parameter α = 10/(DX ∗ DX), but we change
the size of the central area Ω0 in such way, that in average 5 particles from 100 will
occur in this area. We consider 4 time steps

• T=2.5 days
Ω0 = [−0.52DX, 0.52DX] × [−0.52DX, 0.52DX]

• T=5 days
Ω0 = [−0.74DX, 0.74DX] × [−0.74DX, 0.74DX]

• T=7.5 days
Ω0 = [−0.9DX, 0.9DX] × [−0.9DX, 0.9DX]

• T=10 days
Ω0 = [−1.04DX, 1.04DX] × [−1.04DX, 1.04DX]
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Figure 2: The multiple particle model and one-particle model
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Figure 5: The distribution of the concentration with different time steps
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and for these times we compare the distribution of the concentration for correlated
and independent simulations (see figure 5). We have repeated each experiment 100
times. All distributions in figure 5 have the same mean, but, in case of multiple
particle model, this mean is the result of many ’zero’ concentrations and few very
high concentrations. However, from the figure 5 it can be seen that the number
of the ’zero’ concentrations goes down with the time and the difference between
multiple particle model and one-particle model disappear.

4.2 One- and two-particle models

In practice one does not need to start the multiple particle simulation to find the
ensemble mean concentration and the concentration deviation. It is enough to con-
sider only one- or two-particle models. We consider in this section a one-particle
model of the form

dX(s) =
√

2DI2dB(s),
X(t) = x,

(28)

where the diffusion coefficient D is assumed to be constant. The equation (28)
can be solved exactly and the density function p(t, x, T, y) of the stochastic process
X(T ) is a normal distribution with mean x and variance 2D(T − t)

p(t, x, T, y) =
1

4πD(T − t)
exp

(
− ‖y − x‖2

4D(T − t)

)
. (29)

We will consider the averaged concentration in the domain Ω0 defined as

C(Ω0, T ) =
1

μ(Ω0)

∫
y∈Ω0

C(y, T )dy =

1

μ(Ω0)

∫
y∈Ω0

p(t, x, T, y)

H(y)
dy =

1

μ(Ω0)

∫
y∈Ω0

p(t, x, T, y)dy = p(t, x, T, Ω0),

(30)

where μ(Ω0) is the area of Ω0 and the water depth H(y) ≡ 1 is taken to be constant
in our test problems. The exact value of the integral in the equation (30) can be
found from standard tables. We can use the forward estimator to find p(t, x, T, Ω0)
in the following way,

p̂(t, x, T, Ω0) =
1

Nδ2

N∑
n=1

K

(
X

(n)

t,x − η(n)

δ

)
, (31)

where η(n), n = 1, . . . , N are independent random numbers, uniformly distributed
in the square Ω0. In a similar way we can rewrite the forward-reverse estimator (27)

p̂(t, x, T, Ω0) =
1

N2δ2

N∑
n,m=1

K

⎛⎝X
(n)

t,x − Y
(m)

t∗,η(m)(T )

δ

⎞⎠Y (m)

t∗,η(m)(T )
(32)
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We consider a two-particle forward system of the form

dZ(s) =
√

2DI4

(√
1 − β2dB(s) + βdW (s)

)
Z(t) = (x, x)T

(33)

where Z = (X [1], X [2])T , B = (B[1], B[2])T , W = (W [1], W [2])T . The Brownian
motions W [1] and W [2] are assumed to be correlated with covariance matrix (7).
From here on we will use the notation r instead of r12 to denote the distance between
particles X [1] and X [2]. The reverse time system corresponding to (33) has the
following form

dR(s) =

(
Y [1](s)

Y [2](s)

)
=

⎛⎜⎜⎝ 2D
∂f

∂ỹ[2]

2D
∂f

∂ỹ[1]

⎞⎟⎟⎠ ds+

√
2DI4(

√
1 − β2dB̃(s) + βdW̃ (s))

dγ(s) = 2Dβ2

(
∂2f

∂ỹ
[1]
1 ∂ỹ

[2]
1

+
∂2f

∂ỹ
[1]
2 ∂ỹ

[2]
2

)
γds

R(t∗) = (y, y)T , γ(t∗) = 1

(34)

It should be noted that the introduction of the reverse system in section 3 is based
on a system of uncorrelated Brownian motions. It is not difficult to see however
that the reverse system has an equivalent representation with respect to correlated
Brownian motions which is given by (34) for this example.

The deviation of the concentration in the area Ω0 at time T is defined as (we use
the fact that H = 1)

Dev(T, Ω0) =
√
|p(t, x, x, T, Ω0, Ω0) − p2(t, x, T, Ω0)|, (35)

where
p(t, x, x, T, Ω0, Ω0) =

1

μ2(Ω0)

∫
Ω0

∫
Ω0

p(t, x, x, T, y[1], y[2])dy[1]dy[2]. (36)

Similarly to the one-particle model we can use the forward and forward-reverse
estimators to find the value of the joint probability function p(t, x, x, T, Ω0, Ω0)

p̂FE(t, x, x, T, Ω0, Ω0) =

1

Nδ4

N∑
n=1

K

(
Z

(n)

t,x,x(T ) − ζ(n)

δ

)
(37)

p̂FRE(t, x, x, T, Ω0, Ω0) =

1

N2δ4

N∑
n,m=1

K̃

⎛⎝Z
(n)

t,x,x(t∗) − R
(m)

t∗,ζ(m)(T )

δ

⎞⎠ γt∗,ζ(m)(T ),
(38)

where ζ(n) ∈ IR4, n = 1, . . . , N are the random numbers uniformly distributed in
Ω0 × Ω0. In tables 2,3,4,5,6 the results of the one- and two-particle models are
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Table 2: The results of the one-particle model, the exact value p(t, x, T, y) = 0.1886

method N p(t, x, T, y)

FE 104 0.1879 ± 0.0131
FE 105 0.1895 ± 0.0070
FE 106 0.1880 ± 0.0025

FRE 103 0.1875 ± 0.0050
FRE 104 0.1889 ± 0.0016
FRE 105 0.1885 ± 0.0007

Table 3: The joint probability function p(t, x, x, T, y, y)

method N p(t, x, x, T, y, y)

α = 1/(DX ∗ DX)
FE 105 0.2405 ± 0.0259
FE 106 0.2468 ± 0.0163
FE 107 0.2520 ± 0.0066

FRE 103 0.2546 ± 0.0209
FRE 104 0.2568 ± 0.0070
FRE 105 0.2604 ± 0.0023

α = 5/(DX ∗ DX)
FE 105 0.2303 ± 0.0218
FE 106 0.2622 ± 0.0118
FE 107 0.2933 ± 0.0070

FRE 103 0.3138 ± 0.4193
FRE 104 0.3715 ± 0.1077
FRE 105 0.3567 ± 0.0353

shown. The time of the simulation has been 2.5 days for all experiments. Each
experiment was repeated 30 times in order to find the error due to the numerical
simulation. In tables 2 and 4 one can see the results of the one-particle model for
the point y = 0 and for the area Ω0 (see the section 4.1). In this case we know the
solution of the stochastic differential equation (28) and can compare the numerical
results with the exact solution. From these tables it can be seen that the forward-
reverse estimator (FRE) is at least two orders of magnitude more accurate than
the pure forward estimator (FE). Also one can see that the value of the function
p(t, x, T, y) does not differ too much from p(t, x, T, Ω0).

In tables 3 and 5 the results of the two-particle model are presented for different
value of the parameter α. There are two aspects of the approach that we will discuss
in the next two sections. Firstly, it can be seen from these tables that the FRE is
much more efficient (three orders of magnitude) than the FE when the value of
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Table 4: The results of the one-particle model, the exact value p(t, x, T, Ω0) = 0.1856

method N p(t, x, T, Ω0)

FE 104 0.1797 ± 0.0141
FE 105 0.1859 ± 0.0077
FE 106 0.1844 ± 0.0030

FRE 103 0.1863 ± 0.0051
FRE 104 0.1853 ± 0.0020
FRE 105 0.1857 ± 0.0006

Table 5: The joint probability function p(t, x, x, T, Ω0, Ω0)

method N p(t, x, x, T, Ω0, Ω0)

α = 1/(DX ∗ DX)
FE 105 0.1606 ± 0.0232
FE 106 0.1662 ± 0.0128
FE 107 0.1705 ± 0.0070

FRE 103 0.1682 ± 0.0244
FRE 104 0.1705 ± 0.0049
FRE 105 0.1725 ± 0.0017

α = 5/(DX ∗ DX)
FE 105 0.1239 ± 0.0157
FE 106 0.1360 ± 0.0092
FE 107 0.1367 ± 0.0067

FRE 103 0.1250 ± 0.1953
FRE 104 0.1250 ± 0.0585
FRE 105 0.1440 ± 0.0185

parameter α is relatively small, but for a large value of α the FRE is not so efficient.
We will discuss this in more detail in section 4.4. Secondly, if one compares the
joint probability function at the point p(t, x, x, T, y, y) and the average value of
this function on Ω0, it can be seen that these values differ significantly. Moreover,
the results from the table 6 show that the deviation in the point Dev(T, y) grows
with larger values of α, while the averaged value in Ω0 of deviation Dev(T, Ω0)
decreases. This behavior will be discussed in more detail in the next section.

4.3 The definition of the standard deviation at a point

In this section we discuss some properties of the joint probability function
p(t, x, x, T, y[1], y[2]), in particularly, how this function depends on the choice of
the correlation function f(ρ). In figure 6 the correlation function (8) for α =
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Table 6: The concentration and the standard deviation of the concentration
in the point y

α C(y, T ) Dev(y, T )

1/(DX ∗ DX) 0.1886 0.4737
5/(DX ∗ DX) 0.1886 0.5142

in the area Ω0

α C(Ω0, T ) Dev(Ω0, T )

1/(DX ∗ DX) 0.1856 0.3682
5/(DX ∗ DX) 0.1856 0.3249
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Figure 6: The correlation function

1/(DX ∗ DX) and for α = 5/(DX ∗ DX) is shown. It is clear at the larger α
is, the faster the correlation function goes down and as a result the particles become
independent much faster. Therefore it is natural to expect that the deviation of the
concentration decreases when α increases, but the results of the tables 3, 5 and 6
show the opposite. To explain this behavior we consider the joint probability func-
tion p(t, x, x, T, y[1], y[2] in some neighborhood of the point y. Let introduce the
following function

C(y)C(y; r) = p(t, x, x, T, y, u) |‖y−u‖=r (39)

The function (39) can be interpreted as the dependence between the concentration
at a point y and at a location at a distance r from this point y. In figure (7) the
function C(y)C(y; r) is shown for α = 1/(DX ∗ DX) and for α = 5/(DX ∗ DX).
The value of this function for α = 5/(DX ∗ DX) at r = 0 is larger than for
α = 1/(DX ∗ DX). But this function decreases very fast and as a consequence it
is not enough to study this function when r = 0 as it has been done before, but
we need to consider some neighborhood of this point. We propose to define the
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deviation at the point y at time T D̂ev(T, y) as followed

D̂ev(T, y) =
1

H(y)
×∣∣∣∣∣ ∫

IR2

∫
IR2

p(t, x, x, T, u, v)g(u)g(v)dudv

−
(∫

IR2

p(t, x, T, u)g(u)du

)2
∣∣∣∣∣∣

1
2

(40)

where
g(u) =

1

2πσ2
exp

(‖y − u‖2

2σ2

)
. (41)

The function g(u) is a density function of a 2-dimensional normal distribution with
the vector of means y and and covariance matrixσ2I2. We can use the forward and
forward-reverse estimators (31) and (32) to find the integral

p̂(t, x, T, y) =

∫
IR2

p(t, x, T, u)g(u)du

assuming that η(n), n = 1, . . . , N are independent realizations of the random variable
η with density function g(u). In a similar way we can use the formulae (37) and
(38) to find the integral

p̂(t, x, x, T, y, y) =

∫
IR2

∫
IR2

p(t, x, x, T, u, v)g(u)g(v)dudv.

In this case we assume that ζ(n), n = 1, . . . , N are independent realizations of the
4-dimensional random variable ζ normally distributed with the vector of means
(y, y)T and the covariance matrix σ2I4. The value of the parameter σ2 should be
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relatively small compared with the variance of the stochastic process X(s) at time
T . For example, in our simulation σ2 = 0.04DX2, while the variance of X(T ) is
2D(T − t) ≈ 0.85DX2.

It can be shown easily using the equation (29) and the properties of density function
of a normally distributed random variable that

p̂(t, x, T, y) =
1

2π(2D(T − t) + σ2)
exp

( ‖x − y‖2

2D(T − t) + σ2

)
The results for functions p̂(t, x, T, y) and for p̂(t, x, x, T, y, y) are shown in table
7. Comparing this results with the results from tables 2 and 3 it can be seen that

Table 7: The concentration and the standard deviation of the concentration
method N p̂(t, x, T, y) p̂(t, x, x, T, y, y) D̂ev(T, y)

α = 1/(DX ∗ DX)
FE 105 0.1801 0.1074 ± 0.0162 0.2738
FE 106 0.1801 0.1161 ± 0.0091 0.2892
FE 105 0.1801 0.1146 ± 0.0060 0.2866

FRE 103 0.1801 0.1142 ± 0.0154 0.2859
FRE 104 0.1801 0.1148 ± 0.0047 0.2870
FRE 105 0.1801 0.1166 ± 0.0014 0.2901

α = 5/(DX ∗ DX)
FE 105 0.1801 0.0822 ± 0.0126 0.2231
FE 106 0.1801 0.0866 ± 0.0079 0.2327
FE 105 0.1801 0.0847 ± 0.0050 0.2286

FRE 103 0.1801 0.0788 ± 0.0749 0.2153
FRE 104 0.1801 0.0871 ± 0.0446 0.2338
FRE 105 0.1801 0.0882 ± 0.0173 0.2361

the differences between the functions p(t, x, T, y) and p̂(t, x, T, y) are not very big,
while the functions p(t, x, x, T, y, y) and p̂(t, x, x, T, y, y) differ very strongly.

4.4 The implementation of the FRE

As it was mentioned before the accuracy of the forward-reverse estimator strongly
depends an the correlation function f(r), in particular on the parameter α. The
difficulties arise with the weighting coefficient Y . First of all, the differential equation
for the scalar function Y(s) is very sensitive to the choice of the time step h of the
numerical integration of the reverse time system (34). This problem is discussed in
detail in [26]. As a consequence we must chose the time step h sufficiently small.
Unfortunately, decreasing the time step we also increase the time of the simulation
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and affects the efficiency of the forward-reverse estimator. A possible solution is to
compare the results of the simulations with time steps h and 2h (using the Talay-
Tubaro method we repeat the simulation with double time step) and if the solutions
of the reverse time system (34) differ very much, we do not take into consideration
the results of these particles. For example, one can compare the results for time step
h = 300s and for time step h = 30s (N = 104, α = 5/(DX ∗DX), t∗ = 0.5(T −t)+t)
dt = 300s p̂(t, x, x, T, y, y) = 0.0871 ± 0.0446
dt = 30s p̂(t, x, x, T, y, y) = 0.08435± 0.0367

Another problem occurs when the weighting coefficient Y(T ) varies very much for
different particles. For example, when α = 5/(DX ∗ DX) the values Y(T ) can be
around 300 and, of course, the contribution of this particle will dominate in the
sum (27). What we can do here is to throw away the particles with “very large”
coefficient. For instance, one can see the results of the forward-reverse estimator
including all particles and without the particles with the coefficient Y of more than
250

all particles p̂ = 0.0871 ± 0.0446
throw away particles p̂ = 0.0782 ± 0.0239

This method may help in many situations, but when the correlation function is too
steep, the forward-reverse method will fail and we have to choose the internal point
t∗ closer to the end point T .

5 Application

Figure 8: The tidally-averaged flow

In this section we study the mean ensemble concentration and the deviation of
the concentration in some critical locations along the Dutch seaside using one- and
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two-particle models. Furthermore, we apply the forward-reverse estimator for both
models and compare the results with the results of the classical forward estimator.

In our application we have used a tidally-averaged numerical flow model with grid
size DX = 1600m (see figure 8). Because we know the velocities and water depth
only in the grid points of the model, we use bilinear interpolation to obtain the
velocities and water depth at arbitrary locations. The dispersion coefficient is chosen
constant: D = 5 m2/s. We assume that at initial time 104 kg of contaminant was
released.

5.1 One-particle model

The reverse system associated with the one-particle model (3) has the following form
(we take into account that D is constant)

dY (s) =

(
−u − D

H

∂H

∂ỹ

)
ds +

√
2DI2dW (s)

dY(s) = −Y(s)
∂

∂ỹ
·
(
u + D

H
∂H
∂ỹ

)
ds

Y (t∗) = y, Y(t∗) = 1,

(42)

To solve the systems (3) and (42) we use the Euler method (15) and then apply the
Talay-Tubaro method to find the probability density function. We suppose that the
contaminant is released in the location (20, 40). We consider some critical locations
in which we want to know the ensemble mean concentration and the standard devi-
ation of the concentration. For two of them we compare the forward estimator and
the forward-reverse estimator (see table 8). The time step of the simulation is sup-
posed h = 5 min. We use the Euler scheme (15) and then applied the Talay-Tubaro
method. The bandwidth δ for the estimators is chosen according table 1. In order
to reduce the numerical error of the forward estimator we chose the bandwidth δ for
one-particle model as δ = CN−1/6, where

C =

(
1

N − 1

N∑
n=1

‖X(n)

t,x − 1

N

N∑
n=1

X
(n)

t,x‖2

) 1
2

.

For the two-particle model we use the Fukunaga method (22). In figure 9 one can see
the example of the forward and reverse time simulation during 10 days. The internal
point point t∗ is chosen in the middle of the time interval [t, T ]. In practice t∗ is an
additional parameter which can be chosen at any point of the time interval [t, T ].
In our application we use the method that was proposed by [3]. The concentration
of the pollutant in the location y = (27, 47) after T = 2.5 days is:

C(T, y) =
p(t, x, T, y)

H(y)
= 2.15 ∗ 10−5 kg/m3
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Figure 9: The example of the forward and reverse time simulation for the one-particle
model

The concentration of the pollutant in the location y = (35, 55) after T = 5 days is
equal

C(T, y) =
p(t, x, T, y)

H(y)
= 6.7 ∗ 10−6 kg/m3

5.2 Two-particle model

Now we consider the two-particle model. The forward system has the following form

Z(s) = d

(
X [1]

X [2]

)
=

(
u[1] + D

H[1]
∂H[1]

∂y[1]

u[2] + D
H[2]

∂H[2]

∂y[2]

)
ds+

√
2DI4

( √
1 − β2dB[1](s) + βdW [1](s)√
1 − β2dB[2](s) + βdW [2](s)

)
Z(t) = (x, x)T

(43)

The reverse time system that corresponds with the two-particle forward system (43)
can be written as follows

dR =

(
dY [1]

dY [2]

)
=

(
−u[1] − D

H[1]
∂H[1]

∂ỹ[1] + 2D ∂f

∂ỹ[2]

−u[2] − D
H[2]

∂H[2]

∂ỹ[2] + 2D ∂f

∂ỹ[1]

)
ds+

√
2DI4

( √
1 − β2dB[1](s) + βdW [1](s)√
1 − β2dB[2](s) + βdW [2](s)

)
dγ(s) =

(
ϕ1(s, Y

[1]) + ϕ2(s, Y
[2]) + ϕ3(s, R)

)
γ(s)ds

R(t∗) = (y, y)T , , γ(t∗) = 1,

(44)
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Table 8: The results for the one-particle model
method N p̂(t, x, T, y)

y = (27, 47) T = 2.5 days
FE 104 0.1218 ± 0.0089
FE 105 0.1211 ± 0.0054
FE 106 0.1223 ± 0.0024

FRE 103 0.1220 ± 0.0057
FRE 104 0.1213 ± 0.0015
FRE 105 0.1216 ± 0.0006

y = (35, 55) T = 5 days
FE 104 0.0398 ± 0.0040
FE 105 0.0389 ± 0.0017
FE 106 0.0392 ± 0.0010

FRE 103 0.0392 ± 0.0018
FRE 104 0.0393 ± 0.0007
FRE 105 0.0393 ± 0.0002

where
ϕi(s, Y

[i]) = − ∂

∂ỹ[i] ·
(
u[i] + D

H[i]
∂H[i]

∂∂ỹ[i]

)
,

i = 1, 2

represents the contribution of the flow and the function

ϕ3(s, R) = 2Dβ2

(
∂2f

∂ỹ
[1]
1 ∂ỹ

[2]
1

+
∂2f

∂ỹ
[1]
2 ∂ỹ

[2]
2

)

represents the contribution of the correlation between particles. Figure 4 shows an
example of the forward and reverse time simulation for a pair of particles. The time
of the simulation is 10 days. In table 9 the results for the second moment of the
particle distribution (or the joint probability function of process Z(T )) are shown.
We compare the forward and forward-reverse estimator for two locations.

The deviation D̂ev(T, y) can be found with help of the equation (40)

y = (27, 47) D̂ev(T, y) = 4 ∗ 10−5 kg/m3

y = (35, 55) D̂ev(T, y) = 1.8 ∗ 10−5 kg/m3

From the table 8 we can see that the mean ensemble concentration calculated by the
FRE using 103 particles is C(T, y) = 6.7·10−6±0.3·10−6 kg/m3. This deviation ±0.3·
10−6 kg/m3 is caused by statistical error of the estimation process and converges to
zero with the increasing the number of particles. Contrary, the standard deviation
D̂ev = 1.8·10−5 kg/m3 as calculated in table 9, is the result of the spatial correlation
of the turbulence and does not depend on the number of particles.
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Figure 10: The example of the forward and reverse time simulation for two-particle
model

The results for the concentration and the standard deviation for different locations
along the Dutch coast ar(see figure 11) are shown in table 10. Here we used the
FRE with number of particles N = 105. The results show that even 10 days after
the calamity the concentration fluctuation are still very large and should be taken
into account in order to assess the impact of the calamity.

6 Conclusion

In this paper we studied one- and two-particle models for computing the mean
and standard deviation of the concentration in the Dutch coastal zone using the
forward-reverse estimator. The results show that the actual concentration may
become much higher than the ensemble mean concentration as computed by the
traditional transport model. As a consequence, for providing an accurate prediction
of the spreading of the pollutant, we need to use two-particle models and have to
take into account the spatial correlation of the turbulence.

The results also show that the forward-reverse estimator is at least two orders of
magnitude more efficient than the classical pure forward estimator.
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Table 10: The concentration Ĉ(T, y), kg/m3 and the standard deviation of the
concentration D̂ev(T, y), kg/m3
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