90 research outputs found

    Tropical carbon sink accelerated by symbiotic dinitrogen fixation

    Get PDF
    A major uncertainty in the land carbon cycle is whether symbiotic nitrogen fixation acts to enhance the tropical forest carbon sink. Nitrogen-fixing trees can supply vital quantities of the growth-limiting nutrient nitrogen, but the extent to which the resulting carbon–nitrogen feedback safeguards ecosystem carbon sequestration remains unclear. We combine (i) field observations from 112 plots spanning 300 years of succession in Panamanian tropical forests, and (ii) a new model that resolves nitrogen and light competition at the scale of individual trees. Fixation doubled carbon accumulation in early succession and enhanced total carbon in mature forests by ~10% (~12MgC ha−1) through two mechanisms: (i) a direct fixation effect on tree growth, and (ii) an indirect effect on the successional sequence of non-fixing trees. We estimate that including nitrogen-fixing trees in Neotropical reforestation projects could safeguard the sequestration of 6.7 Gt CO2 over the next 20 years. Our results highlight the connection between functional diversity of plant communities and the critical ecosystem service of carbon sequestration for mitigating climate change

    Mineralogical attenuation for metallic remediation in a passive system for mine water treatment

    Get PDF
    Passive systems with constructed wetlands have been consistently used to treat mine water from abandoned mines. Long-term and cost-effective remediation is a crucial expectation for these water treatment facilities. To achieve that, a complex chain of physical, chemical, biological, and mineralogical mechanisms for pollutants removal must be designed to simulate natural attenuation processes. This paper aims to present geochemical and mineralogical data obtained in a recently constructed passive system (from an abandoned mine, Jales, Northern Portugal). It shows the role of different solid materials in the retention of metals and arsenic, observed during the start-up period of the treatment plant. The mineralogical study focused on two types of materials: (1) the ochre-precipitates, formed as waste products from the neutralization process, and (2) the fine-grained minerals contained in the soil of the wetlands. The ochre-precipitates demonstrated to be poorly ordered iron-rich material, which gave rise to hematite upon artificial heating. The heating experiments also provided mineralogical evidence for the presence of an associated amorphous arsenic-rich compound. Chemical analysis on the freshly ochre-precipitates revealed high concentrations of arsenic (51,867 ppm) and metals, such as zinc (1,213 ppm) and manganese (821 ppm), indicating strong enrichment factors relative to the water from which they precipitate. Mineralogical data obtained in the soil of the wetlands indicate that chlorite, illite, chlorite–vermiculite and mica–vermiculite mixedlayers, vermiculite, kaolinite and goethite are concentrated in the fine-grained fractions (<20 and <2 ÎŒm). The chemical analyses show that high levels of arsenic (up to 3%) and metals are also retained in these fractions, which may be enhanced by the low degree of order of the clay minerals as suggested by an XRD study. The obtained results suggest that, although the treatment plant has been receiving water only since 2006, future performance will be strongly dependent on these identified mineralogical pollutant hosts.Fundação para a CiĂȘncia e a Tecnologia (FCT

    Potential range of impact of an ecological trap network: the case of timber stacks and the Rosalia longicorn

    Get PDF
    Although the negative impact of timber stacks on populations of saproxylic beetles is a well-known phenomenon, there is relatively little data concerning the scale of this impact and its spatial aspect. Beech timber stored in the vicinity of the forest can act as an ecological trap for the Rosalia longicorn (Rosalia alpina), so in this study we have attempted to determine the spatial range of the impact of a network of timber stacks. Timber stacks in the species’ range in the study area were listed and monitored during the adult emergence period in 2014–2016. Based on published data relating to the species’ dispersal capabilities, buffers of four radii (500, 1000, 1600, 3000 m) were delineated around the stacks and the calculated ranges of potential impact. The results show that the percentage of currently known localities of the Rosalia longicorn impacted by stacks varies from 19.7 to 81.6%, depending on the assumed impact radius. The percentage of forest influenced by timber stacks was 77% for the largest-radius buffer. The overall impact of the ecological trap network is accelerated by fragmentation of the impact-free area. It was also found that forests situated close to the timber stacks where the Rosalia longicorn was recorded were older and more homogeneous in age and species composition than those around stacks where the species was absent. Such results suggest that timber stacks act as an ecological trap in the source area of the local population

    Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding Loci Generated Using Next-Generation Sequence Analyses

    Get PDF
    Background The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. Methods Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered. The timings of major millipede lineage divergence points were estimated. Results The resulting phylogeny differed from the existing classifications in a number of fundamental ways. Our phylogeny includes a grouping that has never been described (Juliformia+Merocheta+Stemmiulida), and the ancestral reconstructions suggest caution with respect to using spinnerets as a unifying characteristic for the Nematophora. Our results are shown to have significantly stronger support than previous hypotheses given our data. Our efforts represent the first step toward obtaining a well-supported and robust phylogeny of the Diplopoda that can be used to answer many questions concerning the evolution of this ancient and diverse animal group

    Phylogenetic Constraints Do Not Explain the Rarity of Nitrogen-Fixing Trees in Late-Successional Temperate Forests

    Get PDF
    Symbiotic nitrogen (N)-fixing trees are rare in late-successional temperate forests, even though these forests are often N limited. Two hypotheses could explain this paradox. The 'phylogenetic constraints hypothesis' states that no late-successional tree taxa in temperate forests belong to clades that are predisposed to N fixation. Conversely, the 'selective constraints hypothesis' states that such taxa are present, but N-fixing symbioses would lower their fitness. Here we test the phylogenetic constraints hypothesis.Using U.S. forest inventory data, we derived successional indices related to shade tolerance and stand age for N-fixing trees, non-fixing trees in the 'potentially N-fixing clade' (smallest angiosperm clade that includes all N fixers), and non-fixing trees outside this clade. We then used phylogenetically independent contrasts (PICs) to test for associations between these successional indices and N fixation. Four results stand out from our analysis of U.S. trees. First, N fixers are less shade-tolerant than non-fixers both inside and outside of the potentially N-fixing clade. Second, N fixers tend to occur in younger stands in a given geographical region than non-fixers both inside and outside of the potentially N-fixing clade. Third, the potentially N-fixing clade contains numerous late-successional non-fixers. Fourth, although the N fixation trait is evolutionarily conserved, the successional traits are relatively labile.These results suggest that selective constraints, not phylogenetic constraints, explain the rarity of late-successional N-fixing trees in temperate forests. Because N-fixing trees could overcome N limitation to net primary production if they were abundant, this study helps to understand the maintenance of N limitation in temperate forests, and therefore the capacity of this biome to sequester carbon

    Communal roosting sites are potential ecological traps: experimental evidence in a Neotropical harvestman

    Full text link
    Situations in which animals preferentially settle in low-quality habitat are referred to as ecological traps, and species that aggregate in response to conspecific cues, such as scentmarks, that persist after the animals leave the areamay be especially vulnerable. We tested this hypothesis on harvestmen (Prionostemma sp.) that roost communally in the rainforest understory. Based on evidence that these animals preferentially settle in sites marked with conspecific scent, we predicted that established aggregation sites would continue to attract new recruits even if the animals roosting there perished. To test this prediction, we simulated intense predation by repeatedly removing all individuals from 10 established roosts, and indeed, these sites continued to attract new harvestmen. A more likely reason for an established roost to become unsuitable is a loss of overstory canopy cover caused by treefalls. To investigate this scenario, without felling trees, we established 16 new communal roosts by translocating harvestmen into previously unused sites. Half the release sites were located in intact forest, and half were located in treefall gaps, but canopy cover had no significant effect on the recruitment rate. These results support the inference that communal roost sites are potential ecological traps for species that aggregate in response to conspecific scent

    Combined Tevatron upper limit on gg->H->W+W- and constraints on the Higgs boson mass in fourth-generation fermion models

    Get PDF
    Report number: FERMILAB-PUB-10-125-EWe combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg→H→W+W- in pp̅ collisions at the Fermilab Tevatron Collider at √s=1.96  TeV. With 4.8  fb-1 of integrated luminosity analyzed at CDF and 5.4  fb-1 at D0, the 95% confidence level upper limit on σ(gg→H)×B(H→W+W-) is 1.75 pb at mH=120  GeV, 0.38 pb at mH=165  GeV, and 0.83 pb at mH=200  GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.Peer reviewe

    Early life patterns of common infection: a latent class analysis

    Get PDF
    Early life infection has been implicated in the aetiology of many chronic diseases, most often through proxy measures. Data on ten infectious symptoms were collected by parental questionnaire when children were 6 months old as part of the Avon Longitudinal Study of Parents and Children, United Kingdom. A latent class analysis was used to identify patterns of infection and their relationship to five factors commonly used as proxies: sex, other children in the home, maternal smoking, breastfeeding and maternal education. A total of 10,032 singleton children were included in the analysis. Five classes were identified with differing infectious disease patterns and children were assigned to the class for which they had a highest probability of membership based on their infectious symptom profile: ‘general infection’ (n = 1,252, 12.5%), ‘gastrointestinal’ (n = 1,902, 19.0%), ‘mild respiratory’ (n = 3,560, 35.5%), ‘colds/ear ache’ (n = 462, 4.6%) and ‘healthy’ (n = 2,856, 28.5%). Females had a reduced risk of being in all infectious classes, other children in the home were associated with an increased risk of being in the ‘general infection’, ‘mild respiratory’ or ‘colds/ear ache’ class. Breastfeeding reduced the risk of being in the ‘general infection’ and ‘gastrointestinal’ classes whereas maternal smoking increased the risk of membership. Higher maternal education was associated with an increased risk of being in the ‘mild respiratory’ group. Other children in the home had the greatest association with infectious class membership. Latent class analysis provided a flexible method of investigating the relationship between multiple symptoms and demographic and lifestyle factors
    • 

    corecore