49 research outputs found

    Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1

    Get PDF
    Considerable evidence implicates DISC1 as a susceptibility gene for multiple psychiatric diseases. DISC1 has been intensively studied at the molecular, cellular and behavioral level, but its role in regulating brain connectivity and brain network function remains unknown. Here, we utilize a set of complementary approaches to assess the functional brain network abnormalities present in mice expressing a truncated Disc1 gene (Disc1tr Hemi mice). Disc1tr Hemi mice exhibited hypometabolism in the prefrontal cortex (PFC) and reticular thalamus along with a reorganization of functional brain network connectivity that included compromised hippocampal-PFC connectivity. Altered hippocampal-PFC connectivity in Disc1tr Hemi mice was confirmed by electrophysiological analysis, with Disc1tr Hemi mice showing a reduced probability of presynaptic neurotransmitter release in the monosynaptic glutamatergic hippocampal CA1-PFC projection. Glutamate system dysfunction in Disc1tr Hemi mice was further supported by the attenuated cerebral metabolic response to the NMDA receptor (NMDAR) antagonist ketamine and decreased hippocampal expression of NMDAR subunits 2A and 2B in these animals. These data show that the Disc1 truncation in Disc1tr Hemi mice induces a range of translationally relevant endophenotypes underpinned by glutamate system dysfunction and altered brain connectivity

    High intake of sugars and starch, low number of meals and low roughage intake are associated with equine gastric ulcer syndrome in a Belgian cohort

    No full text
    Equine gastric ulcer syndrome (EGUS) is a pathological condition affecting the glandular and squamous regions of the stomach. It is characterized by non-specific clinical signs, behavioural changes or can also be found without any overt clinical manifestations. Nutritional factors such as intermittent feeding, high sugars and starch intake, large amounts of straw as forage and prolonged time without access to forage have all been associated with an increased risk of equine squamous gastric disease (ESGD). The aim of this study was to investigate which nutritional practices are commonly seen in clinical ESGD cases in Belgium. Medical records of 27 horses referred to the equine nutritional service at Ghent University (2013-2018) due to equine gastric ulcer lesions were reviewed. Twenty-one healthy horses referred for dietary evaluation during the same period were selected as control cases (CC). Dietary evaluation was performed on an individual basis. Forage/concentrate ratio on dry matter basis, forage content in the diet, total dietary sugars and starch intake per day and per meal were analysed. Retrospective descriptive and statistical analyses were performed. Significantly, higher amounts of forage intake (%DM per BW) in the CC vs. ESGD group were noted (p <= .05) with average values of 1.39 (SD +/- 0.27) and 1.27 (SD +/- 0.70) respectively. There were no significant differences for sugars and starch intake in g/kg BW/day (p = .18). However, the sugars and starch intake per meal (g/kg BW/meal) in the CC group (average value 1.06, SD +/- 0.56) was significantly (p < .001) lower than in the EGUS group (average value 1.85 SD +/- 0.78). Forage intake below the recommended absolute minimum value as well as high sugars and starch intake were most commonly associated with EGUS in the present case series. An adequate diet formulation taking into account these main nutritional factors is therefore essential to avoid gastric problems in horses

    A phase III trial of topotecan and whole brain radiation therapy for patients with CNS-metastases due to lung cancer

    Get PDF
    Brain metastases represent an important cause of morbidity in patients with lung cancer and are associated with a mean survival of less than 6 months. Thus, new regimens improving the outcome of these patients are urgently needed. On the basis of promising data raised in a phase I/II trial, we initiated an open, randomised, prospective, multicentric phase III trial, comparing whole brain radiation therapy (WBRT; 20 × 2 Gy) alone with WBRT+topotecan (RCT; 0.4 mg m−2 day−1 × 20). A total of 320 patients with CNS-metastases due to SCLC or NSCLC were projected. The primary end point was overall survival, whereas second end points were local response and progression-free survival. However, until the cutoff date of study completion (i.e., a study duration of 34 months), only a total of 96 (RCT:47, WBRT:49) patients had been recruited, and so an analysis was performed at that time point. Although the numbers of grade 3/4 non-haematological toxicities (besides alopecia 115 (RCT/WBRT: 55 out of 60) were evenly distributed, the 25 haematological events occurred mainly in the combined treatment arm (24 out of 1). Local response, evaluated 2 weeks after treatment, was assessable in 44 (RCT/WBRT: 23 out of 21) patients, showing CR in eight (3 out of 5), PR in 17 (11 out of 6), SD in 14 (8 out of 6) and PD in five (1 out of 4) patients (all differences n.s.). Neither OAS (RCT/WBRT: median (days)): 87 out of 95, range 3–752/4–433; HR 1.32; 95% CI (0.83; 2.10)) nor PFS (median (days)): 71 out of 66, range, 3–399/4–228; HR 1.28, 95% CI (0.73; 2.43) differed significantly. On the basis of these results and the slow recruitment, a continuation of the study did not seem reasonable. The available data show no significant advantage for concurrent radiochemotherapy for patients with lung cancer; however, the recruited number of patients is too low to exhibit a small advantage of combined treatment

    Live Imaging of Xwnt5A-ROR2 Complexes

    Get PDF
    Secreted molecules of the Wnt family regulate key decisions in embryogenesis and adult tissue homeostasis by activating a complex network of Wnt signaling pathways. Although the different branches of Wnt signaling have been studied for more than 25 years, fluorophore tagged constructs for live cell imaging of Wnt molecules activating the Wnt/ÎČ-catenin pathway have become available only recently. We have generated a fluorophore tagged Wnt construct of the Xenopus Wnt5a protein (Xwnt5A) with the enhanced green fluorescent protein (EGFP), Xwnt5A-EGFP. This construct activates non-canonical Wnt pathways in an endocytosis dependent manner and is capable of compensating for the loss of endogenous Xwnt5A in Xenopus embryos. Strikingly, non-canonical Wnt pathway activation was restricted to short-range signaling while an inhibitory effect was observed in transwell cell cultures taken as long-range signaling model sytem. We used our Xwnt5A-EGFP construct to analyze in vivo binding of Wnt5A to its co-receptor ROR2 on the microscopic and on the molecular level. On the microscopic level, Xwnt5A-EGFP clusters in the membrane and recruits ROR2-mCherry to these clusters. Applying dual-colour dual-focus line-scanning fluorescence correlation spectroscopy on dorsal marginal zone explants, we identified membrane tethered Xwnt5A-EGFP molecules binding to ROR2-mCherry molecules. Our data favour a model, in which membrane-tethered Wnt-5A recruits ROR2 to form large ligand/receptor clusters and signals in an endocytosis-dependent manner

    Rare Species Support Vulnerable Functions in High-Diversity Ecosystems

    Get PDF
    Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across spatial scales. As such, they are likely to insure against future uncertainty arising from climate change and the ever-increasing anthropogenic pressures on ecosystems. Our results call for a more detailed understanding of the role of rarity and functional vulnerability in ecosystem functioning

    A MPSoC prototyping platform for flexible radio applications

    No full text
    ISBN 978-0-7695-3782-5International audienceFull-fledged softare radio platforms are complex and expensive systems, focused on signal processing, and not very suitable for easy development and large scale experimentation. We propose a Multi-Processor System-on-Chip (MPSoC) prototyping platform targeting the support for flexible radio. This platform is fully customizable at every layer of the wireless networking stack, making it easy to prototype new protocols from the radio to application layers. Our goal was threefold: provide support for a full system on the platform so that it can run autonomously, use "standard" components as much as possible and a modular design to esnure fast and simple development and testing to network de velopers. We rely on a highly modular Field-Programmable Gate Array (FPGA) based architecture. The practical results achieved so far show the effectiveness of the proposed solution in term of flexibility and cost

    Une plate-forme d'expérimentation multiprocesseur pour les réseaux sans fil

    No full text
    ISBN 2-9522395-2-5National audienceCet article présente le travail effectué dans le cadre de la mise au point d'une plate-forme d'expérimentation pour les réseaux sans fil se basant sur des cartes FPGA à bas coût

    Trait‐based ecology of terrestrial arthropods

    No full text
    In focusing on how organisms' generalizable functional properties (traits) interact mechanistically with environments across spatial scales and levels of biological organization, trait‐based approaches provide a powerful framework for attaining synthesis, generality and prediction. Trait‐based research has considerably improved understanding of the assembly, structure and functioning of plant communities. Further advances in ecology may be achieved by exploring the trait–environment relationships of non‐sessile, heterotrophic organisms such as terrestrial arthropods, which are geographically ubiquitous, ecologically diverse, and often important functional components of ecosystems. Trait‐based studies and trait databases have recently been compiled for groups such as ants, bees, beetles, butterflies, spiders and many others; however, the explicit justification, conceptual framework, and primary‐evidence base for the burgeoning field of ‘terrestrial arthropod trait‐based ecology’ have not been well established. Consequently, there is some confusion over the scope and relevance of this field, as well as a tendency for studies to overlook important assumptions of the trait‐based approach. Here we aim to provide a broad and accessible overview of the trait‐based ecology of terrestrial arthropods. We first define and illustrate foundational concepts in trait‐based ecology with respect to terrestrial arthropods, and justify the application of trait‐based approaches to the study of their ecology. Next, we review studies in community ecology where trait‐based approaches have been used to elucidate how assembly processes for terrestrial arthropod communities are influenced by niche filtering along environmental gradients (e.g. climatic, structural, and land‐use gradients) and by abiotic and biotic disturbances (e.g. fire, floods, and biological invasions). We also review studies in ecosystem ecology where trait‐based approaches have been used to investigate biodiversity–ecosystem function relationships: how the functional diversity of arthropod communities relates to a host of ecosystem functions and services that they mediate, such as decomposition, pollination and predation. We then suggest how future work can address fundamental assumptions and limitations by investigating trait functionality and the effects of intraspecific variation, assessing the potential for sampling methods to bias the traits and trait values observed, and enhancing the quality and consolidation of trait information in databases. A roadmap to guide observational trait‐based studies is also presented. Lastly, we highlight new areas where trait‐based studies on terrestrial arthropods are well positioned to advance ecological understanding and application. These include examining the roles of competitive, non‐competitive and (multi‐)trophic interactions in shaping coexistence, and macro‐scaling trait–environment relationships to explain and predict patterns in biodiversity and ecosystem functions across space and time. We hope this review will spur and guide future applications of the trait‐based framework to advance ecological insights from the most diverse eukaryotic organisms on Earth

    ONERA three-dimensional icing model

    No full text
    corecore