42 research outputs found
Overview of the spectrometer optical fiber feed for the Habitable-zone Planet Finder
The Habitable-zone Planet Finder (HPF) is a highly stabilized fiber fed
precision radial velocity (RV) spectrograph working in the Near Infrared (NIR):
810 - 1280 nm . In this paper we present an overview of the preparation of the
optical fibers for HPF. The entire fiber train from the telescope focus down to
the cryostat is detailed. We also discuss the fiber polishing, splicing and its
integration into the instrument using a fused silica puck. HPF was designed to
be able to operate in two modes, High Resolution (HR- the only mode mode
currently commissioned) and High Efficiency (HE). We discuss these fiber heads
and the procedure we adopted to attach the slit on to the HR fibers.Comment: Presented at 2018 SPIE Astronomical Telescopes + Instrumentation,
Austin, Texas, USA. 18 pages, 25 figures, and 2 table
The Open Cluster Chemical Analysis and Mapping Survey: Local Galactic Metallicity Gradient with APOGEE using SDSS DR10
The Open Cluster Chemical Analysis and Mapping (OCCAM) Survey aims to produce
a comprehensive, uniform, infrared-based dataset for hundreds of open clusters,
and constrain key Galactic dynamical and chemical parameters from this sample.
This first contribution from the OCCAM survey presents analysis of 141 members
stars in 28 open clusters with high-resolution metallicities derived from a
large uniform sample collected as part of the SDSS-III/Apache Point Observatory
Galactic Evolution Experiment (APOGEE). This sample includes the first
high-resolution metallicity measurements for 22 open clusters. With this
largest ever uniformly observed sample of open cluster stars we investigate the
Galactic disk gradients of both [M/H] and [alpha/M]. We find basically no
gradient across this range in [alpha/M], but [M/H] does show a gradient for
R_{GC} < 10 kpc and a significant flattening beyond R_{GC} = 10 kpc. In
particular, whereas fitting a single linear trend yields an [M/H] gradient of
-0.09 +/- 0.03$ dex/kpc --- similar to previously measure gradients inside 13
kpc --- by independently fitting inside and outside 10 kpc separately we find a
significantly steeper gradient near the Sun (7.9 <= R_{GC} <= 10) than
previously found (-0.20 +/- 0.08 dex/kpc) and a nearly flat trend beyond 10 kpc
(-0.02 +/- 0.09 dex/kpc).Comment: 6 pages, 4 figures, ApJ letters, in pres
Ghosts of NEID's Past
The NEID spectrograph is a R 120,000 resolution fiber-fed and highly
stabilized spectrograph for extreme radial velocity (RV) precision. It is being
commissioned at the 3.5 m WIYN telescope in Kitt Peak National Observatory with
a desired instrumental precision of better than 30 \cms{}. NEID's bandpass of
380 -- 930 nm enables the simultaneous wavelength coverage of activity
indicators from the Ca HK lines in the blue to the Ca IR triplet in the IR. In
this paper we will present our efforts to characterize and mitigate optical
ghosts in the NEID spectrograph during assembly, integration and testing, and
highlight several of the dominant optical element contributors such as the
cross dispersion prism and input optics. We shall present simulations of the
2-D spectrum and discuss the predicted ghost features on the focal plane, and
how they may impact the RV performance for NEID. We also present the mitigation
strategy adopted for each ghost which may be applied to future instrument
designs. This work will enable other instrument builders to potentially avoid
some of these issues, as well as outline mitigation strategies.Comment: Conference Proceeding from SPIE Astronomical Telescopes +
Instrumentation (2020): 12 page
The NEID spectrometer: fibre injection system design
NEID is a high resolution echelle spectrograph designed to enable extremely precise Doppler radial velocity observations of stars in the 380-930nm wavelength range1. It has recently been installed at the 3.5m WIYN telescope at Kitt Peak National Observatory, and is currently being commissioned. The design is based on a white pupil layout with a monolithic parabolic primary mirror and a 195mm pupil size on the R4 Echelle grating. Here we describe the optical and mechanical design, assembly, and alignment of the fiber injection system which converts the native focal ratio of the sky, calibration, and science fibers to the focal ratio required to form the 195mm collimated beam
Overview of the spectrometer optical fiber feed for the habitable-zone planet finder
The Habitable-zone Planet Finder (HPF) is a highly stabilized fiber fed precision radial velocity (RV) spec- trograph working in the Near Infrared (NIR): 810 – 1280 nm. In this paper we present an overview of the preparation of the optical fibers for HPF. The entire fiber train from the telescope focus down to the cryostat is detailed. We also discuss the fiber polishing, splicing and its integration into the instrument using a fused silica puck. HPF was designed to be able to operate in two modes, High Resolution (HR- the only mode mode currently commissioned) and High Efficiency (HE). We discuss these fiber heads and the procedure we adopted to attach the slit on to the HR fibers
Ultra-Stable Environment Control for the NEID Spectrometer: Design and Performance Demonstration
Two key areas of emphasis in contemporary experimental exoplanet science are
the detailed characterization of transiting terrestrial planets, and the search
for Earth analog planets to be targeted by future imaging missions. Both of
these pursuits are dependent on an order-of-magnitude improvement in the
measurement of stellar radial velocities (RV), setting a requirement on
single-measurement instrumental uncertainty of order 10 cm/s. Achieving such
extraordinary precision on a high-resolution spectrometer requires
thermo-mechanically stabilizing the instrument to unprecedented levels. Here,
we describe the Environment Control System (ECS) of the NEID Spectrometer,
which will be commissioned on the 3.5 m WIYN Telescope at Kitt Peak National
Observatory in 2019, and has a performance specification of on-sky RV precision
< 50 cm/s. Because NEID's optical table and mounts are made from aluminum,
which has a high coefficient of thermal expansion, sub-milliKelvin temperature
control is especially critical. NEID inherits its ECS from that of the
Habitable-zone Planet Finder (HPF), but with modifications for improved
performance and operation near room temperature. Our full-system stability test
shows the NEID system exceeds the already impressive performance of HPF,
maintaining vacuum pressures below Torr and an RMS temperature
stability better than 0.4 mK over 30 days. Our ECS design is fully open-source;
the design of our temperature-controlled vacuum chamber has already been made
public, and here we release the electrical schematics for our custom
Temperature Monitoring and Control (TMC) system.Comment: Accepted for publication in JATI
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic
data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data
release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median
z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar
spectra, along with the data presented in previous data releases. These spectra
were obtained with the new BOSS spectrograph and were taken between 2009
December and 2011 July. In addition, the stellar parameters pipeline, which
determines radial velocities, surface temperatures, surface gravities, and
metallicities of stars, has been updated and refined with improvements in
temperature estimates for stars with T_eff<5000 K and in metallicity estimates
for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars
presented in DR8, including stars from SDSS-I and II, as well as those observed
as part of the SDSS-III Sloan Extension for Galactic Understanding and
Exploration-2 (SEGUE-2).
The astrometry error introduced in the DR8 imaging catalogs has been
corrected in the DR9 data products. The next data release for SDSS-III will be
in Summer 2013, which will present the first data from the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) along with another year of
data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at
http://www.sdss3.org/dr
The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with
new instrumentation and new surveys focused on Galactic structure and chemical
evolution, measurements of the baryon oscillation feature in the clustering of
galaxies and the quasar Ly alpha forest, and a radial velocity search for
planets around ~8000 stars. This paper describes the first data release of
SDSS-III (and the eighth counting from the beginning of the SDSS). The release
includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap,
bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a
third of the Celestial Sphere. All the imaging data have been reprocessed with
an improved sky-subtraction algorithm and a final, self-consistent photometric
recalibration and flat-field determination. This release also includes all data
from the second phase of the Sloan Extension for Galactic Understanding and
Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars
at both high and low Galactic latitudes. All the more than half a million
stellar spectra obtained with the SDSS spectrograph have been reprocessed
through an improved stellar parameters pipeline, which has better determination
of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from
submitted version
The NEID spectrometer: fibre injection system design
NEID is a high resolution echelle spectrograph designed to enable extremely precise Doppler radial velocity observations of stars in the 380-930nm wavelength range1. It has recently been installed at the 3.5m WIYN telescope at Kitt Peak National Observatory, and is currently being commissioned. The design is based on a white pupil layout with a monolithic parabolic primary mirror and a 195mm pupil size on the R4 Echelle grating. Here we describe the optical and mechanical design, assembly, and alignment of the fiber injection system which converts the native focal ratio of the sky, calibration, and science fibers to the focal ratio required to form the 195mm collimated beam