61 research outputs found

    Genome-scale metabolic model of the rat liver predicts effects of diet restriction.

    Get PDF
    Mapping network analysis in cells and tissues can provide insights into metabolic adaptations to changes in external environment, pathological conditions, and nutrient deprivation. Here, we reconstructed a genome-scale metabolic network of the rat liver that will allow for exploration of systems-level physiology. The resulting in silico model (iRatLiver) contains 1,882 reactions, 1,448 metabolites, and 994 metabolic genes. We then used this model to characterize the response of the liver\u27s energy metabolism to a controlled perturbation in diet. Transcriptomics data were collected from the livers of Sprague Dawley rats at 4 or 14 days of being subjected to 15%, 30%, or 60% diet restriction. These data were integrated with the iRatLiver model to generate condition-specific metabolic models, allowing us to explore network differences under each condition. We observed different pathway usage between early and late time points. Network analysis identified several highly connected hub genes (Pklr, Hadha, Tkt, Pgm1, Tpi1, and Eno3) that showed differing trends between early and late time points. Taken together, our results suggest that the liver\u27s response varied with short- and long-term diet restriction. More broadly, we anticipate that the iRatLiver model can be exploited further to study metabolic changes in the liver under other conditions such as drug treatment, infection, and disease

    Expression profiling predicts outcome in breast cancer

    Get PDF
    Gruvberger et al. postulate, in their commentary [1] published in this issue of Breast Cancer Research, that our “prognostic gene set may not be broadly applicable to other breast tumor cohorts”, and they suggest that “it may be important to define prognostic expression profiles separately in estrogen receptor (ER) positive and negative tumors”. This is based on two observations derived from our gene expression profiling data in breast cancer [2]: the overlap between reporter genes for prognosis and ER status, and Gruvberger et al.’s inability to confirm the prognosis prediction using a nonoptimal selection of 58 of our 231 prognosis reporter genes. The overlap between our prognosis reporter genes and the ER status genes is certainly very large, mainly because ~10 % of all genes on our microarray contain informatio

    PPARα siRNA–Treated Expression Profiles Uncover the Causal Sufficiency Network for Compound-Induced Liver Hypertrophy

    Get PDF
    Uncovering pathways underlying drug-induced toxicity is a fundamental objective in the field of toxicogenomics. Developing mechanism-based toxicity biomarkers requires the identification of such novel pathways and the order of their sufficiency in causing a phenotypic response. Genome-wide RNA interference (RNAi) phenotypic screening has emerged as an effective tool in unveiling the genes essential for specific cellular functions and biological activities. However, eliciting the relative contribution of and sufficiency relationships among the genes identified remains challenging. In the rodent, the most widely used animal model in preclinical studies, it is unrealistic to exhaustively examine all potential interactions by RNAi screening. Application of existing computational approaches to infer regulatory networks with biological outcomes in the rodent is limited by the requirements for a large number of targeted permutations. Therefore, we developed a two-step relay method that requires only one targeted perturbation for genome-wide de novo pathway discovery. Using expression profiles in response to small interfering RNAs (siRNAs) against the gene for peroxisome proliferator-activated receptor α (Ppara), our method unveiled the potential causal sufficiency order network for liver hypertrophy in the rodent. The validity of the inferred 16 causal transcripts or 15 known genes for PPARα-induced liver hypertrophy is supported by their ability to predict non-PPARα–induced liver hypertrophy with 84% sensitivity and 76% specificity. Simulation shows that the probability of achieving such predictive accuracy without the inferred causal relationship is exceedingly small (p < 0.005). Five of the most sufficient causal genes have been previously disrupted in mouse models; the resulting phenotypic changes in the liver support the inferred causal roles in liver hypertrophy. Our results demonstrate the feasibility of defining pathways mediating drug-induced toxicity from siRNA-treated expression profiles. When combined with phenotypic evaluation, our approach should help to unleash the full potential of siRNAs in systematically unveiling the molecular mechanism of biological events

    Use of a mixed tissue RNA design for performance assessments on multiple microarray formats

    Get PDF
    The comparability and reliability of data generated using microarray technology would be enhanced by use of a common set of standards that allow accuracy, reproducibility and dynamic range assessments on multiple formats. We designed and tested a complex biological reagent for performance measurements on three commercial oligonucleotide array formats that differ in probe design and signal measurement methodology. The reagent is a set of two mixtures with different proportions of RNA for each of four rat tissues (brain, liver, kidney and testes). The design provides four known ratio measurements of >200 reference probes, which were chosen for their tissue-selectivity, dynamic range coverage and alignment to the same exemplar transcript sequence across all three platforms. The data generated from testing three biological replicates of the reagent at eight laboratories on three array formats provides a benchmark set for both laboratory and data processing performance assessments. Close agreement with target ratios adjusted for sample complexity was achieved on all platforms and low variance was observed among platforms, replicates and sites. The mixed tissue design produces a reagent with known gene expression changes within a complex sample and can serve as a paradigm for performance standards for microarrays that target other species

    A Novel Statistical Algorithm for Gene Expression Analysis Helps Differentiate Pregnane X Receptor-Dependent and Independent Mechanisms of Toxicity

    Get PDF
    Genome-wide gene expression profiling has become standard for assessing potential liabilities as well as for elucidating mechanisms of toxicity of drug candidates under development. Analysis of microarray data is often challenging due to the lack of a statistical model that is amenable to biological variation in a small number of samples. Here we present a novel non-parametric algorithm that requires minimal assumptions about the data distribution. Our method for determining differential expression consists of two steps: 1) We apply a nominal threshold on fold change and platform p-value to designate whether a gene is differentially expressed in each treated and control sample relative to the averaged control pool, and 2) We compared the number of samples satisfying criteria in step 1 between the treated and control groups to estimate the statistical significance based on a null distribution established by sample permutations. The method captures group effect without being too sensitive to anomalies as it allows tolerance for potential non-responders in the treatment group and outliers in the control group. Performance and results of this method were compared with the Significant Analysis of Microarrays (SAM) method. These two methods were applied to investigate hepatic transcriptional responses of wild-type (PXR+/+) and pregnane X receptor-knockout (PXR−/−) mice after 96 h exposure to CMP013, an inhibitor of ÎČ-secretase (ÎČ-site of amyloid precursor protein cleaving enzyme 1 or BACE1). Our results showed that CMP013 led to transcriptional changes in hallmark PXR-regulated genes and induced a cascade of gene expression changes that explained the hepatomegaly observed only in PXR+/+ animals. Comparison of concordant expression changes between PXR+/+ and PXR−/− mice also suggested a PXR-independent association between CMP013 and perturbations to cellular stress, lipid metabolism, and biliary transport

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification

    A compound attributes-based predictive model for drug induced liver injury in humans.

    No full text
    Drug induced liver injury (DILI) is one of the key safety concerns in drug development. To assess the likelihood of drug candidates with potential adverse reactions of liver, we propose a compound attributes-based approach to predicting hepatobiliary disorders that are routinely reported to US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). Specifically, we developed a support vector machine (SVM) model with recursive feature extraction, based on physicochemical and structural properties of compounds as model input. Cross validation demonstrates that the predictive model has a robust performance with averaged 70% of both sensitivity and specificity over 500 trials. An independent validation was performed on public benchmark drugs and the results suggest potential utility of our model for identifying safety alerts. This in silico approach, upon further validation, would ultimately be implemented, together with other in vitro safety assays, for screening compounds early in drug development

    A Multi-mRNA Prognostic Signature for Anti-TNFα Therapy Response in Patients with Inflammatory Bowel Disease

    No full text
    Background: Anti-TNF-alpha (anti-TNFα) therapies have transformed the care and management of inflammatory bowel disease (IBD). However, they are expensive and ineffective in greater than 50% of patients, and they increase the risk of infections, liver issues, arthritis, and lymphoma. With 1.6 million Americans suffering from IBD and global prevalence on the rise, there is a critical unmet need in the use of anti-TNFα therapies: a test for the likelihood of therapy response. Here, as a proof-of-concept, we present a multi-mRNA signature for predicting response to anti-TNFα treatment to improve the efficacy and cost-to-benefit ratio of these biologics. Methods: We surveyed public data repositories and curated four transcriptomic datasets (n = 136) from colonic and ileal mucosal biopsies of IBD patients (pretreatment) who were subjected to anti-TNFα therapy and subsequently adjudicated for response. We applied a multicohort analysis with a leave-one-study-out (LOSO) approach, MetaIntegrator, to identify significant differentially expressed (DE) genes between responders and non-responders and then used a greedy forward search to identify a parsimonious gene signature. We then calculated an anti-TNFα response (ATR) score based on this parsimonious gene signature to predict responder status and assessed discriminatory performance via an area-under-receiver operating-characteristic curve (AUROC). Results: We identified 324 significant DE genes between responders and non-responders. The greedy forward search yielded seven genes that robustly distinguish anti-TNFα responders from non-responders, with an AUROC of 0.88 (95% CI: 0.70–1). The Youden index yielded a mean sensitivity of 91%, mean specificity of 76%, and mean accuracy of 86%. Conclusions: Our findings suggest that there is a robust transcriptomic signature for predicting anti-TNFα response in mucosal biopsies from IBD patients prior to treatment initiation. This seven-gene signature should be further investigated for its potential to be translated into a predictive test for clinical use

    The Optimization and Biological Significance of a 29-Host-Immune-mRNA Panel for the Diagnosis of Acute Infections and Sepsis

    No full text
    In response to the unmet need for timely accurate diagnosis and prognosis of acute infections and sepsis, host-immune-response-based tests are being developed to help clinicians make more informed decisions including prescribing antimicrobials, ordering additional diagnostics, and assigning level of care. One such test (InSepℱ, Inflammatix, Inc.) uses a 29-mRNA panel to determine the likelihood of bacterial infection, the separate likelihood of viral infection, and the risk of physiologic decompensation (severity of illness). The test, being implemented in a rapid point-of-care platform with a turnaround time of 30 min, enables accurate and rapid diagnostic use at the point of impact. In this report, we provide details on how the 29-biomarker signature was chosen and optimized, together with its molecular, immunological, and medical significance to better understand the pathophysiological relevance of altered gene expression in disease. We synthesize key results obtained from gene-level functional annotations, geneset-level enrichment analysis, pathway-level analysis, and gene-network-level upstream regulator analysis. Emerging findings are summarized as hallmarks on immune cell interaction, inflammatory mediators, cellular metabolism and homeostasis, immune receptors, intracellular signaling and antiviral response; and converging themes on neutrophil degranulation and activation involved in immune response, interferon, and other signaling pathways
    • 

    corecore