737 research outputs found

    'I Want to Make Queer Films, But Not LGBT films’: An Interview with He Xiaopei

    Get PDF
    Despite decriminalization in 1997 and partial pathologization in 2001, homosexuality remains a sensitive topic in contemporary China. This is reflected in mainstream and online media where representation of LGBTQ-related issues are often subject to heavy censorship. However, despite the austere restrictions that exist, the past two decades have witnessed the emergence of “‘new queer Chinese cinema”’ (Leung 2012; Yue 2012; Pecic 2016; Bao 2018). Led by a number of young independent queer filmmakers along with advancements in new media technologies, this underground movement of queer filmmaking have has created new possibilities for imagining sexuality and gender as well as opportunities for community -building.He Xiaopei is a leading queer feminist filmmaker, activist, and director of Beijing-based NGO Pink Space, an NGO dedicated to promoting sexual rights and gender equality. Her films include The Lucky One (Chong’er, 2012), Our Marriages: Lesbians Marry Gay Men (Yisheng qiyuan, 2013), Yvo and Chrissy (Ruci Shenghuo, 2017) and Playmates (Wanban, 2019). The Lucky One tells the story of Zhang Xi, a HIV- positive woman with only a short time to live. A kind of video diary of Zhang’s life, the film questions notions of fact and fiction, as well as the politics of representation when working with marginalized people. Our Marriages: Lesbians Marry Gay Men explores how two lesbian couples in Northeast China negotiate norms and expectations around marriage, and the possibilities for queer life in Chinese society. Yvo and Chrissy follows the lives of two people from England who gave up an inheritance of one million pounds as well as several properties, and reflects on questions of wealth, gender, sexuality, and happiness. He’s work to date has demonstrated a distinctly antinormative approach to gender and sexuality, while also highlighting some of the less discussed issues of class, precarity, and marginality in China and elsewhere.In February 2017, Séagh Kehoe, PhD candidate from the University of Nottingham, spoke with He about her work and the place of documentary filmmaking in queer activism in China today

    Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2

    Full text link
    The determination by powder neutron diffraction of the ambient temperature crystal structures of compounds in the NaxCoO2 family, for 0.3 < x <= 1.0, is reported. The structures consist of triangular CoO2 layers with Na ions distributed in intervening charge reservoir layers. The shapes of the CoO6 octahedra that make up the CoO2 layers are found to be critically dependent on the electron count and on the distribution of the Na ions in the intervening layers, where two types of Na sites are available. Correlation of the shapes of cobalt-oxygen octahedra, the Na ion positions, and the electronic phase diagram in NaxCoO2 is made, showing how structural and electronic degrees of freedom can be coupled in electrically conducting triangular lattice systems.Comment: 15 pages, 1 tables, 6 figures Submitted to Physical Review

    Charmless Three-Body Baryonic B Decays

    Full text link
    Motivated by recent data on B-> p pbar K decay, we study various charmless three-body baryonic B decay modes, including Lambda pbar pi, Sigma0 pbar pi, p pbar pi, p pbar Kbar0, in a factorization approach. These modes have rates of order 10^{-6}. There are two mechanisms for the baryon pair production, current-produced and transition. The behavior of decay spectra from these baryon production mechanisms can be understood by using QCD counting rules. Predictions on rates and decay spectra can be checked in the near future.Comment: 26 pages, 9 figures; version to appear in Phys. Rev.

    Relationship of relevant factors to P(v-a)CO2/C(a-v)O-2 ratio in critically ill patients

    Get PDF
    Objective This study investigated the factors related to the ratio of the venoarterial carbon dioxide tension difference [P(v-a)CO2] to the arteriovenous oxygen content difference [C(a-v)O2] (hereafter termed “Ratio”). Methods We retrospectively studied 1294 pairs of arterial and central venous blood gas measurements in 352 critically ill patients. A high Ratio was defined as > 1.68 based on published literature. Measurements were divided into four groups: Group I [P(v-a)CO2 ≤ 6 mmHg/central venous oxygen saturation (ScvO2)  6 mmHg/ScvO2 ≥ 70%], and Group IV [P(v-a)CO2 > 6 mmHg/ScvO2 < 70%]. Results The Ratio’s strongest correlation was with P(v-a)CO2 when compared with ScvO2 and hemoglobin in all data. The P(v-a)CO2 and ScvO2 were significantly higher and the hemoglobin and arterial oxygen saturation were significantly lower in the high Ratio measurements (>1.68) than low Ratio measurements (≤1.68). The P(v-a)CO2 was best for predicting a high Ratio. A P(v-a)CO2 threshold of 7 mmHg was associated with a sensitivity of 41.77% and specificity of 90.62% for predicting a high Ratio. Conclusions A high P(v-a)CO2 is the most relevant contributor to a high Ratio among all related factors in critically ill patients

    Understanding the newly observed Y(4008) by Belle

    Full text link
    Very recently a new enhancement around 4.05 GeV was observed by Belle experiment. In this short note, we discuss some possible assignments for this enhancement, i.e. ψ(3S)\psi(3S) and DDˉD^*\bar{D}^* molecular state. In these two assignments, Y(4008) can decay into J/ψπ0π0J/\psi\pi^0\pi^0 with comparable branching ratio with that of Y(4008)J/ψπ+πY(4008)\to J/\psi\pi^+\pi^-. Thus one suggests high energy experimentalists to look for Y(4008) in J/ψπ0π0J/\psi\pi^0\pi^0 channel. Furthermore one proposes further experiments to search missing channel DDˉD\bar{D}, DDˉ+h.c.D\bar{D}^*+h.c. and especially χcJπ+ππ0\chi_{cJ}\pi^+\pi^-\pi^0 and ηcπ+ππ0\eta_c\pi^+\pi^-\pi^0, which will be helpful to distinguish ψ(3S)\psi(3S) and DDˉD^*\bar{D}^* molecular state assignments for this new enhancement.Comment: 4 pages, 5 figures. Typos correcte

    Cryo-EM structures of tau filaments from Alzheimer's disease

    Get PDF
    Alzheimer's disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4-3.5 Å resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer's disease. Filament cores are made of two identical protofilaments comprising residues 306-378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases

    Scaling of anisotropy flows in intermediate energy heavy ion collisions

    Get PDF
    Anisotropic flows (v1v_1, v2v_2 and v4v_4) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v1v_1) and elliptic flow (v2v_2) are demonstrated for light nuclear clusters. Moreover, the ratios of v4/v22v_4/v_2^2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the proceeding issue in Nuclear Physics

    Simulation of dimensionality effects in thermal transport

    Full text link
    The discovery of nanostructures and the development of growth and fabrication techniques of one- and two-dimensional materials provide the possibility to probe experimentally heat transport in low-dimensional systems. Nevertheless measuring the thermal conductivity of these systems is extremely challenging and subject to large uncertainties, thus hindering the chance for a direct comparison between experiments and statistical physics models. Atomistic simulations of realistic nanostructures provide the ideal bridge between abstract models and experiments. After briefly introducing the state of the art of heat transport measurement in nanostructures, and numerical techniques to simulate realistic systems at atomistic level, we review the contribution of lattice dynamics and molecular dynamics simulation to understanding nanoscale thermal transport in systems with reduced dimensionality. We focus on the effect of dimensionality in determining the phononic properties of carbon and semiconducting nanostructures, specifically considering the cases of carbon nanotubes, graphene and of silicon nanowires and ultra-thin membranes, underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Stabilities of nanohydrated thymine radical cations: insights from multiphoton ionization experiments and ab initio calculations

    Get PDF
    Multi-photon ionization experiments have been carried out on thymine-water clusters in the gas phase. Metastable H2O loss from T+(H2O)n was observed at n ≥ 3 only. Ab initio quantum-chemical calculations of a large range of optimized T+(H2O)n conformers have been performed up to n = 4, enabling binding energies of water to be derived. These decrease smoothly with n, consistent with the general trend of increasing metastable H2O loss in the experimental data. The lowest-energy conformers of T+(H2O)3 and T+(H2O)4 feature intermolecular bonding via charge-dipole interactions, in contrast with the purely hydrogen-bonded neutrals. We found no evidence for a closed hydration shell at n = 4, also contrasting with studies of neutral clusters

    The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array

    Get PDF
    We have already reported the first result on the all-particle spectrum around the knee region based on data from 2000 November to 2001 October observed by the Tibet-III air-shower array. In this paper, we present an updated result using data set collected in the period from 2000 November through 2004 October in a wide range over 3 decades between 101410^{14} eV and 101710^{17} eV, in which the position of the knee is clearly seen at around 4 PeV. The spectral index is -2.68 ±\pm 0.02(stat.) below 1PeV, while it is -3.12 ±\pm 0.01(stat.) above 4 PeV in the case of QGSJET+HD model, and various systematic errors are under study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
    corecore