883 research outputs found

    PARTICLE CLUSTERS IN FLUIDIZED BEDS

    Get PDF
    Accurately predicting the entrainment rate is important in designing a commercial fluidized bed. However, most correlations fall short in providing an accurate prediction of the entrainment rate. Many correlations assume that smaller particles have a higher entrainment rate than larger particles; but, this is often not the case. Smaller particles can, and often do, have lower effective entrainment rates than larger particles. This has been presumed from several different experiments. In one case, the entrainment rate of FCC catalyst fines was measured at different fluidized bed heights and found that higher entrainment fluxes were observed at lower bed heights (i.e., higher disengaging heights). In a second case, it was found in a batch entrainment test that with an initial high concentration the fines level in the entrainment flux was very low. As the fines were gradually elutriated away, the entrainment flux increased dramatically. Following a dramatic increase to a maximum, the entrainment flux then exhibited the classical batch exponential decay as the fines were elutriated from the fluidized bed. Recently, high speed video of particles in a fluidized bed freeboard was able to image and track large clusters of particles in the range of 200 microns to 1000 microns when the bed material had a mean particle size of only 25 microns. All of these findings suggests that fine particles in many materials are clumping or clustering. This increases their effective particle diameter which reduces the entrainment rate. The clumps appear to be formed in the fluidized bed, and are ejected into the freeboard. High-speed videos obtained using observations through a borescope inserted into a fluidized bed at PSRI have confirmed the presence of clusters in fluidized beds. Such a phenomenon has many implications regarding how entrainment may be influenced by fines level, bed height, baffles, jet velocity at the distributor, etc

    PARTICLE ATTRITION MEASUREMENTS USING A JET CUP

    Get PDF
    Particle attrition is usually detrimental as it negatively affects product quality and process cost. Thus, it is important to know how particles attrit under relevant operating conditions. Small jet cup attrition test devices (such as the Davison Jet Cup) are typically used to measure relative particle attrition for fluidized beds and risers. Ideally, the attrition rates measured in these laboratory units provide a relative indication of how the materials will behave in the commercial unit. Most jet cup devices have a cylindrical configuration. However, Particulate Solid Research, Inc. (PSRI) has found that a cylindrical jet cup attrition measurement may not be effective in providing accurate attrition rankings. Attrition index rankings from a cylindrical jet cup and a 0.3-meter (12-inch) diameter, pilot-plant fluidized bed unit did not agree with each other. It was subsequently found in cold flow studies at PSRI in Plexiglas™ jet cup models which showed that many of the solids were nearly stagnant, even at high inlet jet velocities. Approximately 30 to 50% of the particle sample in a cylindrical jet cup was not in motion and was not exposed to the solid stresses needed for accurate particle attrition measurements. Computational Fluid Dynamics (CFD) results confirmed this finding. As a result, it is unlikely that relevant attrition rankings can be reliably determined from cylindrical jet cup studies because a significant portion of the particle sample is not exposed to sufficient solid stresses to cause attrition. Only by insuring that the entire sample is under a similar amount of stress can attrition be accurately linked to inlet jet velocity and directly compared with different materials. This paper discusses the development of a conical jet cup device that allows all of the sample particles to experience similar solids stresses. The rankings of the attrition indices from the conical jet cup were found to correspond to the rankings observed in pilot-plant attrition tests. The agreement in rankings obtained with the new conical jet cup was not observed with the traditional cylindrical jet cup

    The First VERITAS Telescope

    Full text link
    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV γ\gamma-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.Comment: Accepted by Astroparticle Physic

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.
    corecore