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Abstract 

The novel traveling fluidization column, designed and built to assure identical operating 

conditions, was deployed to compare alternate experimental measurement techniques for 

hydrodynamic characterization of gas-fluidized beds. This paper compares measurements of 

particle velocity obtained by radioactive particle tracking (RPT – non-invasive at the Ecole 

Polytechnique), positron emission particle tracking (PEPT – non-invasive at University of 

Birmingham), optical fibre probes (invasive at UBC) and borescopic high speed particle image 

velocimetry (invasive at PSRI) carried out with FCC particles of mean diameter 107 µm. All of 

the techniques provided similar trends with respect to time-average particle velocity profiles, but 

significant differences were observed in some cases. Analysis of the results, focusing on the 

physical principles of each measurement technique, provides valuable insights into the reasons 

for the observed discrepancies. The results also add to a unique hydrodynamic database for 

validation of CFD and other mechanistic models. 

Keywords: Fluidized beds; Particle velocity; Optical fiber probes; Borescopic PIV; Radioactive 

Particle Tracking; Positron Emission Particle Tracking 
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1.0  Introduction 

Gas-fluidized beds are used extensively in industrial applications because of their unique features 

such as excellent heat transfer, ease of solid handling, ease of particle processing and efficient 

solid mixing. Despite the extensive efforts of many researchers and practicing engineers, design 

and scale-up of gas-fluidized beds are still challenging, often relying on empirical correlations 

(Yang, 2003). As a result, fluidized beds are commonly eliminated from consideration as this 

uncertainty compromises the risk tolerances in the corporate culture. Lack of fundamental 

knowledge and accurate experimental data leading to valid hydrodynamic models are among the 

factors that cause uncertainties with design and scale-up. Mechanistic models based on 

computational fluid dynamics (CFD) hold great promise for the design and understanding of gas-

fluidized beds. However, as reported by Grace and Taghipour (2004), validation of 

hydrodynamic models requires comparison of predictions with an extensive array of 

experimental data, with due appreciation of their accuracy.  

Solid motion is of extreme importance as it influences many aspects of gas-fluidized bed 

performance: 

• In fluidized bed reactors, vertical movement of solid particles can transport reaction 

components and catalysts upward and downward in the bed, affecting axial dispersion, 

conversion and selectivity (Kunii and Levenspiel, 1991; Nguyen et al., 1977). 

• Many processes involve contact between solids with different densities (e.g. in the 

production of titanium or zirconium, drying of solids). Solids movement and velocity 

influence mixing processes and staging of the solids. 

• Erosion of in-bed tubes and other components in fluidized beds, as well as particle 

attrition, are directly related to particle motion, affecting the velocity and frequency of 
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impact (Lyczkowski et al., 1993). 

• Favourable heat transfer coefficients in fluidized beds are due to the convective 

movement of solids around and along immersed surfaces.  

Various invasive and non-invasive experimental techniques have been proposed for the 

hydrodynamic study of fluidized beds [6–8]. However, except for our recent voidage data 

(Dubrawski et al., 2013), the accuracy of many of these techniques has not been verified by 

comparing results obtained by alternative techniques under identical operating conditions. This 

makes it difficult to investigate the merits and reliability of each measurement technique.  

In the present study we extended the reporting of results from the novel traveling fluidized bed 

(TFB), designed and built to provide identical operation in different physical settings and 

allowing direct comparison of alternate experimental measurement techniques (Dubrawski et al., 

2013). Operating with the same equipment, with the same particles and under the same 

experimental conditions eliminates differences due to discrepancies between equipment, particles 

and operating conditions as sources of variation in data.  

In our previous work (Dubrawski et al., 2013), radial profiles of time-average voidage measured 

by three different optical probes, electrical capacitance tomography, X-ray computed 

tomography and radioactive particle tracking were compared. This paper extends this study to 

compare different techniques for the measurement of another important hydrodynamic 

parameter, particle velocity.   

Four different experimental techniques − radioactive particle tracking (RPT) a non-invasive 

method practised at the Ecole Polytechnique, Positron emission particle tracking (PEPT), a non-

invasive technique developed at the University of Birmingham, optical fibre probes, an invasive 

technique deployed at the University of British Columbia (UBC), and borescopic high-speed 
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particle image velocimetry (PIV), an invasive measurement method owned by Particulate Solid 

Research Inc. (PSRI) − are employed to investigate particle vertical motion in the traveling 

fluidized bed. Radial profiles of time-average particle velocity and the probability distribution 

function of solid velocity obtained by all four techniques are directly compared. This paper 

reports the results from the experiments using FCC particles. Results of solid motion obtained 

from the TFB operated with sand particles will be presented in a separate paper. Analysis of the 

profiles obtained by the four techniques leads to valuable insights into the physical principles 

characterizing each measurement method that underlie, at least in part, the discrepancies between 

the solid velocity profiles obtained from the four techniques. The results reported in this study, 

together with the earlier data (Dubrawski et al., 2013), constitute a comprehensive hydrodynamic 

database for validation of CFD and other mechanistic models. 

2.0  Experimental 

The experimental apparatus consists of a novel fluidized bed unit, its support structure, basic 

instrumentation and auxiliary components, all of which traveled with the FCC catalyst (dsauter = 

107 µm, ρp = 1560 kg/m
3
) and silica sand (dsauter = 292 µm, ρp = 2644 kg/m

3
) particles and the 

first author to different research laboratories for experimentation using different sophisticated 

instrumentation. The column has a 0.96 m long x 0.133 m i.d. dense bed section, surmounted by 

a 1.36 m long x 0.190 m i.d. freeboard section, as shown in Figure 1. An internal cyclone is 

employed to capture the entrained particles and re-insert them in the dense bed. The gas flow rate 

is measured using an array of sonic nozzles adequately calibrated against an orifice flow meter. 

The fluidizing gas passes through a perforated distributor plate containing 49 perforations of 2.5 

mm diameter arranged on a circular pattern. Other details of the traveling column, particles and 
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operating conditions are provided elsewhere (Dubrawski et al., 2013). 

A brief description of the measurement techniques relevant to this paper is given below. The 

Nyquist criterion of sampling frequency, considering that the system is characterized by a 

prevalent frequency of 3-5 Hz, was largely respected for all measurement techniques. The 

sampling periods of each measurement technique provided enough data to produce reasonable 

reproducibility as indicated in the Results section. 

2.1 Optical Fibre Probes 

An optical probe with a fibre cross-sectional dimension similar to the particle diameter has been 

used at UBC to measure the local velocity of passing solids by cross-correlating two light-

receiving signals, as described by Ellis (2003) and Liu et al. (2003). Measurements were 

obtained at three different heights, at each of which the probe was inserted from ports located on 

the column perimeter to measure the solid velocity at different radial locations along a diameter.  

To calibrate the probe, as reported by Liu et al. (2003), a disc with a particle affixed was rotated 

at a known angular velocity, with a three-fiber probe aligned parallel to the direction of particle 

motion, simulating the movement of particles in the bed. A stepper motor and optical encoder 

were used to precisely control the rotation speed. Over a range of known linear velocities, using 

a cross-correlation method, the time-lag between pairs of signals allows the effective distance 

(Le) between receiving ends of the probe to be determined. The effective distance and time lag 

(τl) determined from cross-correlation of experimental data give the velocity of particles passing 

the fibres (vp) as: 

( )  

( ) 1/

e
p

l

l

L
a v

b M f

τ

τ


=


 = ×

  (1) 
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where f is the sampling frequency and M is a positive integer which, when multiplied by the 

inverse of the frequency, gives the time lag between the two signals. It is clear that τl is a discrete 

function of the frequency.    

Table 1 – Optical probe properties

 Unit PV-4A Measurement heights 3 (z = 0.24, 0.40 and 

0.56 m) 

Probe type Cross section similar to dsauter Sampling time, s 40 (80 × 0.5 s intervals) 

Probe specifications 3-fibre parallel 

dprobe: 4 mm 

dfibre: 280 µm 

Sampling frequency, kHz 15.6 (wall region) 

62.5 (other positions) 

Glass window Yes Le, mm 0.38  

Integration period, s 0.13 (wall region),  

0.033 (other positions) 
Cross-sectional positions 7 

Table 1 reports the properties of the optical probe employed in this study. Sampling frequency 

and integration period are important parameters for obtaining accurate solid velocity values. 

Their choice is dictated by the necessity of capturing instantaneous values of particle velocity 

within a certain range of measurable values, according to the following equations (Liu et al., 

2003): 

( )

,

, ,

2
( )

( )

e
p min

int

p max p max

min

e

L
a v

T

v v E
b f

L E


=



 −
 =
 ⋅

   (2) 

where vp,min, vp,max, Tint and fmin are minimum and maximum measurable particle velocity, 

integration time and required sampling frequency, respectively, for determining the maximum 

velocity with a certain accuracy. The parameter E represents the error, defined as the difference 

between two neighbouring points close to the maximum cross correlation (Herbert et al., 1994), 

dictating the accuracy in determining the maximum solid velocity. High particle velocity 
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corresponds to low τl, and therefore to low M, as given by Equation (1). Equation (1) indicates 

that the higher the sampling frequency, the bigger the multiplicand (M) corresponding to the time 

lag of a high velocity particle, resulting in an increase of the number of points near the maximum 

cross-correlation coefficient and lower error (E).  

A short Tint corresponds to a high vp,min; yet, if integration time is too long, no instantaneous 

velocity is detected since the signals would result from multiple particles moving with different 

velocities. For most radial positions a sampling frequency of 62.5 kHz was deployed. The 

exception was the region close to the column wall, where, because the velocities were smaller in 

magnitude, a lower frequency of 15.6 kHz was used. Continuous data acquisition for 40 s was 

not compatible with the capabilities of the computer in use; therefore, the data were collected 

during 20 intervals of 2.09 s for the wall region (r/R = 0.83) and 80 × 0.52 s intervals for all 

other radial positions. Each interval was then divided into 16 sub-intervals that represent the 

integration time over which the signals were cross-correlated (Table 1).  

The obtainable magnitude of velocities with a maximum tolerance for error (E) of 10% for the 

wall region are included in the interval Iw = [0.0058 m/s, 0.66 m/s] and for the other radial 

positions in the interval Ip = [0.023 m/s, 2.64 m/s]. The time lag corresponding to the maximum 

cross-correlation coefficient is used to calculate the velocity of particles passing the probe tip. 

Solid velocities corresponding to a maximum cross-correlation coefficient greater than 0.5 are 

considered to be valid (Liu et al., 2003). 

In order to obtain a valid cross-correlation, the particles must move almost vertically in the 

measurement volume of the optical probes. If a particle is moving with too great a deviation 

angle with respect to the vertical direction, it is not detected in the second fibre field of view, and 

no valid cross-correlation is then possible. The maximum deviation angle for which the particle 
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movement is traceable by the optical probe is extremely important for direct comparison of the 

results with other measurement techniques. For this purpose, experiments were carried out where 

the particles were poured vertically in front of the optical fibre probe mounted with different 

deviation angles with respect to the vertical direction. The cross-correlation success at different 

deviation angles was quantified by considering the percentage of the data that present a 

maximum cross-correlation coefficient greater than 0.5. Figure 2 shows that for FCC particles 

there is a sharp decrease in the percentage of valid velocity vectors for angles of deviation to the 

vertical exceeding 30 degrees. 

2.2  Borescopic High Speed Particle Image Velocimetry (PIV) 

A high-speed borescopic PIV system, owned and operated by Particulate Solid Research Inc. 

(PSRI), was deployed to investigate the solid motion in the fluidized bed. Details of the 

borescope can be found in Cocco et al. (2010).  The PIV system utilizes a high-speed, high-

resolution Phantom v7.3 camera with a resolution up to 800 x 600 pixels. The capture rate was 

3000 frames/s, with an exposure time of 10 µs. This rate was high enough to capture the highest 

particle velocities in the system. With a custom 6 mm borescope, it was possible to perform 

high-speed PIV measurements at different radial and axial locations inside the fluidized bed. 

This novel technique facilitates optical access to the interior of a dense fluidized bed, which is 

otherwise impossible due to the opacity of the system.  

The total sampling period of the high-speed PIV was chosen considering the number of data that 

had to be produced, memory required for their storage and the time needed for analysis. With 

axial-symmetry assumed for each measurement location, the total sampling period was 10 s, 

resulting from 10 one-second intervals of continuous acquisition. Each video corresponding to 1 
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s of data sampling occupied 0.5 GBytes of memory. The sampling rate should be at least two 

times bigger than the Nyquist frequency in order to capture the typical hydrodynamic 

phenomena in the dense bed which is characterized by a prevalent frequency of 3-5 Hz. 

Properties of the borescopic high-speed PIV system are summarized in Table 2. 

Table 2 – Borescopic high-speed PIV system properties 

Camera Phantom v7.3 Measurement heights 3 (z=0.24, 0.4 & 0.56 m) 

Frame rate 3000 frames/s Sampling time 10 (10×1 s intervals) 

Camera resolution 256×256 pixels Borescope diameter  6 mm 

Exposure time 10 µs Region of interest 1.5 × 1.5 mm  

Cross-sectional positions 9 Glass window Yes 

A Xeon light and an oil filled light pipe funnelled intense light to the tip of the borescope to 

illuminate the particles and generate high-quality images. In order to prevent particles from 

blocking the illumination source, a glass window was mounted in front of the borescope. 

FCC catalyst particles are characterized by substantial electrostatic forces which can cause 

particles to adhere to the tip of the borescope, blocking the view of the solid motion. Significant 

improvement was obtained by rubbing the borescope tip with an antistatic sheet used mainly for 

dryers every 2-3 runs, largely preventing particle adhesion. 

The analysis of the high-speed PIV data consisted of conversion of the videos into consecutive 

grayscale images and determination of solid displacement for each pair of consecutive images 

using an open source Matlab code called PIVlab, developed by Thielicke and Stamhuise (2013), 

where the particle velocity is determined using a multiple pass interrogation method, based on a 

grid refining scheme described by Raffel et al. (1998). The following points summarize the main 

steps for calculating the solid displacement from consecutive frames:  

1. A region of interest of about 2 × 2 mm was chosen. A mask was used to prevent 

interference from outside regions.  
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2. A large interrogation area capable of capturing the greatest particle displacement within 

the region of interest was chosen. 

3. A standard interrogation was performed based on the cross-correlation peak detection 

from successive images. 

4. The results of Step 3 were used as estimates for the next higher resolution level. The 

estimated displacement data were projected onto the next smaller interrogation area, and 

this procedure was repeated until the final image resolution was reached. 

5. Each velocity vector refers to the displacement of the particles present in a dimension 

equal to the smallest pass at a certain position. 

6. In regions where no particles are present, the software assigned a “Not a Number” (NaN) 

velocity value which is then ignored in time averaging. The results containing the 

instantaneous velocity vectors and the relative positions were saved into consecutive text 

files. Velocities more than three standard deviations from the mean were removed. 

7. A Matlab code was then used to calculate the time-average velocity at each radial 

position. As with RPT and PEPT, two values were calculated, one averaging the vertical 

component of all measured velocities and the other where only values with a deviation 

angle with respect to the vertical direction less than 30° were included, in order to 

compare with the optical probe data.   

The choice for the final interrogation pass size depends on the particle image density. Below a 

certain number of particles present in the pass (typically N<4), the displacement detection rate 

decreases significantly, as pointed out by Raffel et al. (1998). Figure 3 shows an image analyzed 

by PIVlab and a corresponding velocity map. The vectors are present only in the region of 

interest where the image is in focus. 
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2.3 Radioactive Particle Tracking (RPT) 

Details of the principles of RPT and the equipment used in this study can be found elsewhere 

(Dubrawski et al., 2013; Larachi et al., 1996). A single radioactive tracer particle was introduced 

into the fluidized bed, and an array of NaI gamma-ray detectors surrounding the column at 

different heights were calibrated to locate this tracer particle at different positions covering the 

entire volume of the column as a function of time. Pure scandium, obtained from Alfa Aesar, 

was chosen as the tracer particle. Samples were cut mechanically under magnification to provide 

the particle sizes of interest. The samples were irradiated to 200 µCi at McMaster University in 

Hamilton, Ontario. Since pure scandium has a density of 2990 kg/m
3
, the tracer was immersed in 

epoxy resin (density ≈ 750 kg/m
3
) post-irradiation to decrease the net particle density, in order to 

better match that of the experimental particles. It was found that tracer particles smaller than 400 

µm could not be handled safely. Thus, single tracer particles from the same batch were used for 

both the FCC and sand particles. Scandium particles as small as ~250 µm in diameter were 

dipped in epoxy, making nearly spherical tracer particles of ~400 µm diameter, with a composite 

density of ~2000 kg/m
3
. Physical properties of the tracer particle are compared to those of the 

bed material in Table 3. 

Table 3 – Comparison of the bed material and the RPT and PEPT tracer particle physical 

properties 

 FCC PEPT Tracer  RPT Tracer 

dsauter (µm) 107 100 400 

ρp (kg/m
3
) 1560 1100 2000 

Shape Nearly spherical Perfectly spherical Nearly spherical 

The 3-D coordinates (x,y,z) of the tracer during the RPT tests, were determined as a function of 

time. The duration of each test was 4 hours, whereas the time interval between each successive 

data acquisition (∆t) was 10 ms. Each test was repeated, yielding a total sampling period of eight 
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hours. The radial profile of particle velocity was correlated at the same measurement heights as 

those obtained from optical probe and borescope using a Matlab code. The most important steps 

for correlating the radial profiles include: 

i. The tracer position coordinate matrix was fed into the program, with the instantaneous 

particle velocity calculated from successive positions of the tracer particle as: 

1

,

1
,

,
1

i i

p x

i i
p p y

p z
i i

x x

tv
y y

v v
t

v
z z

t

+

+

+

− 
 ∆   

−   = =   ∆
     − 

 ∆ 

 (3) 

ii. When and only when the tracer crosses a specific measurement level, the coordinates of 

the tracer particle were saved. Velocity components were then calculated from successive 

positions. Outliers more than 3 standard deviations from the mean were filtered out. 

iii. Two types of averaging were conducted. With the first type, the vertical components of 

velocity of all particles crossing the plane of interest were averaged. In the second type,  

only the velocity vectors with small deviation angles (< 30°) with respect to the vertical 

direction were considered in order to provide direct comparison with the optical probe 

data, and 

iv. The column cross-sectional area was divided into five concentric areas. The velocity 

vectors of the tracer crossing each measurement plane with its centre inside each of the 

concentric areas were counted and averaged. 

The volume-based algorithm commonly used for determining the solid motion pattern in the 

fluidized bed from particle tracking techniques, divides the column into a mesh consisting of 
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small cells of finite volume (e.g. 30×30×30 mm) and calculates the local time-average velocity, 

for the tracer velocity every time that it occupies a certain cell during the entire data sampling 

period (Larachi et al., 1996). In this study, however, the crossing-level algorithm indicated in 

points (i-iv) was mainly employed due to the following factors:  

• The particle tracking data should be as comparable as possible to those obtained by the 

invasive techniques in terms of the measurement volume. The optical probe and the 

borescope produce essentially zero-volume point measurements at the levels of interest 

and the condition (ii) stated in the algorithm produces a similar measurement volume 

corresponding to a zero-width plane.  

• If instead of requiring the condition (ii) stated above, we calculate the velocity of the 

tracer when it is present in an annulus of a finite (30 mm) vertical dimension, the number 

of velocity vectors increases substantially. However, considering a certain region, since 

the slowly moving particles spend more time therein compared to the high velocity ones, 

the time-average solid velocity is biased towards the low velocity vectors. This condition 

is totally absent in optical probe data since the velocity vector corresponding to a certain 

particle is calculated exclusively once due to the cross-correlation criteria. 

The borescopic analysis has a slight tendency to count extremely low-velocity vectors more than 

other ones. This condition applies mostly to nearly-zero velocities since the moving particles 

spend a very short time in the small measurement volume of the borescope.  

The centre of the distributor plate was chosen as the origin of the coordinate system. The relative 

positions of the detectors are reported in our previous work (Dubrawski et al., 2013). 
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2.3 Positron Emission Particle Tracking (PEPT) 

Positron emission particle tracking (PEPT), similar to RPT, allows non-invasive observation of a 

single radioactive tracer particle within the domain of the fluidized bed. The physical principle of 

PEPT differs slightly from RPT since the radioactive particle contains neutron-deficient nuclei 

that undergo β-decay accompanied by positron emission. Any positron emitted by β-decay 

combines with its antiparticle (electron) generating two back-to-back 0.511 MeV γ-rays. The 

difference in emission mechanism which is based on single photon emission for RPT and dual 

photon emission for PEPT affects the method of detection and arrangement of sensors for 

particle tracking (Larachi et al., 1996). Details of the experimental apparatus for tracer 

localization are given elsewhere (Leadbeater et al., 2012; Stein et al., 1996). This paper 

summarizes the main ideas behind the algorithm for tracer particle tracking which are important 

for the interpretation of the results.  

Simultaneous detection of gamma photons resulting from positron annihilation defines a 

trajectory called Line of Response (LoR). The position of the annihilation site must in principle 

lie along the LoR. Ideally, the position of a stationary particle can be detected from the 

intersection point of only two LoR’s. However, some detected events are corrupt (due to scatter, 

random coincidences, etc.). The PEPT algorithm rejects these corrupt events and determines the 

location of the tracer particles based upon the remaining set of LoR’s. 

Starting with a small set of LoR’s, N, the minimum distance point, ms, was then calculated as the 

point in space that minimizes the sum of perpendicular distances of the LoR’s present in the 

initial set. This point was considered as the first estimate of the tracer position. Trajectories that 

lie furthest from ms were assumed to be corrupt and were removed from the set. The minimum 

distance point was then re-evaluated from the new set of LoR’s. This iteration process continued 
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until a predefined fraction, fopt, of the sample N remains. The final ms position was calculated 

from the last fraction of N (fopt×N) with a precision ∆ given by the average perpendicular 

distance from this point to each LoR in the final set. For a stationary particle, ∆ is given by the 

following equation (Leadbeater et al., 2012): 

∆
opt

w

f N
=   (4) 

where w is the spatial resolution of the detection camera, measured to be around 8 mm. The 

magnitude of fopt depends on the proportion of corrupt events; its optimal value was measured for 

each system using a stationary tracer (Leadbeater et al., 2012). For the TFB tests, an optimum 

fraction fopt = 0.12 was used as the value that minimizes the standard deviation of the tracer 

location. From Equation (4) it can be observed that for a stationary particle, as expected, the 

larger the sample, the smaller the error in tracer location. With moving tracers, the LoR’s in each 

set of events are spread along the particle trajectory. Therefore, the final set of LoR’s does not 

converge into a single point, but surrounds a volume around the minimum distance point given 

by precision ∆. The value of N must be reduced for moving tracer particles to deal with the effect 

caused by movement. An exact theoretical argument for optimising N as a function of particle 

speed has not been found (Leadbeater and Parker, 2013).  

In this study for each operating condition, the system was operated for a total of 3.5 hours 

comprising three 1-hour runs and a final run lasting 30 minutes. For each experimental run, the 

average coincidence rate, i.e. rate at which both pairs of gamma photons are simultaneously 

detected, was noted. Assuming that the uncertainty in location for a moving particle follows the 

same formalism as for a stationary particle, ∆ was calculated for different values of N. Small 

values of N result in more detected positions of the moving tracer, but may result in a significant 
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decrease in location precision due to lack of enough LoR’s for the calculation. High N provides 

enough LoR’s for the particle location, but may decrease the precision due to a substantial 

movement of the tracer particle during the time defined by the set size. In this study, the initial 

sample size was chosen considering that its value should result in a reasonable localization rate 

and that the distance travelled between the successive locations be greater than 2∆ (where ∆ is 

obtained from Equation (4)) for all tracer velocities greater than 0.01 m/s. Data for which ∆ was 

larger than three times the standard deviation of the location uncertainties were discarded. The 

analysis of the raw data was performed using overlapping sets to increase position sampling, 

with each set of LoR’s starting one fifth of the way through the previous set (Stein et al., 1996). 

Once the raw data were analyzed with specific criteria given by the input parameters such as N, 

fopt and number of overlapping sets, a matrix with instantaneous spatial position of the tracer 

particle and the location precision was generated. From the successive positions, an 

instantaneous tracer particle velocity was measured. For overlapping sets, the tracer particle 

velocity was obtained by comparing eleven consecutive locations and performing a weighted 

rolling average of six estimates of the resulting velocities: 
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2 3 1 4 5
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(5) 

where 
pv
���

 and  represent the particle velocity and location at instant ti. The rest of the 

algorithm for determining the profile of time-averaged solid velocity at each operating condition 

was exactly the same as that for RPT. For RPT, equation (3) was preferred to the weighted 

rolling average method used for PEPT since the RPT sampling rate was fixed and, in certain 

iP
�
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cases, much slower than for PEPT. Therefore, equation (7) could result in loss of instantaneous 

information for RPT. Nevertheless, 6-point averaging was tested for RPT, but it did not result in 

any improvement of the results in terms of comparison with the other data analysis techniques. 

FCC particles could not be activated enough for the PEPT experiments. Therefore, Dowex SBR 

strong base (OH- form) anionic exchange resin beads whose properties are given in Table 3 were 

used as the tracer particle. The tracer particle then matched well the average size of the FCC 

particles, but the particle density was significantly lower.  

3.0 Results 

Radial profiles of time-average particle velocity obtained by all four experimental techniques are 

reported in Figures 4 to 11. Axial-symmetry is assumed for the data in each of these figures. The 

borescope, PEPT and RPT results in these plots result from considering two cases: (a) only the 

velocity vectors associated with solid motion with a deviation angle with respect to the vertical 

direction of 30 degrees or less (Figures 4-7); and (b) the vertical component of all velocity 

vectors of particles that crossed the measurement height (Figures 8-11). The lines connecting the 

data points, obtained by spline interpolation, are merely intended to facilitate the distinction of 

the results associated with different measurement techniques and should not be considered to be 

accurate interpolations of data between the measurement points. Therefore, caution must be 

taken into account when considering the experimental profiles for CFD models validation.  Even 

though all the measurement heights were included inside the field of view of the PEPT camera, 

solid velocity results obtained by PEPT at 0.24 m above the distributor were excluded from the 

graphs since these results failed to satisfy the physical constraint that, for a steady-state 

measurement, the technique must produce a nearly-zero time-average solid mass flux over the 
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whole cross-section due to mass conservation.   

Radial profiles provided by each of the four techniques show upward solid velocity at the centre 

of the column due to the solid movement induced by the wakes and drift caused by rising voids, 

accompanied by corresponding downward velocities near the wall. Agreement between the time-

average solid velocity profiles obtained by the four techniques is no better than fair, with 

significant differences in some cases, especially between PEPT and the other three experimental 

techniques. In most cases PEPT produced downward velocities of the highest magnitude 

compared to the other techniques in the wall region (up to 8 times greater) and, to a lesser extent 

in some cases, highest upward velocities in the core region (up to 3 times greater).  

The discrepancy between the results was quantified by calculating the absolute percent deviation 

of each technique result from the average obtained considering the results produced by all 

measurement methods at each superficial gas velocity and each spatial position. For each 

superficial gas velocity, the overall deviation of single techniques results from the mean value 

was calculated by averaging the deviations obtained at all spatial positions, and the results are 

given in Figure 12 for both filtering criteria. It can be observed that PEPT presents the highest 

magnitude deviation, optical probe the smallest, with RPT and borescopy somewhere in between. 

The error bars for the RPT, borescopy and optical probe represent 90% confidence intervals 

obtained by considering the whole sample of velocity vectors. For PEPT, since the location 

precision was given for each instantaneous tracer position, the uncertainty in the solid velocity 

was determined using the error propagation formula based on the coefficients in Equation (5). 

The resulting error bars for PEPT are based on the average value of velocity uncertainty. Even if 

the average value of velocity error for PEPT is reasonable (due also to the six-point-averaging 

method), it should be noted that the standard deviation of the error is substantial, leading to 
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uncertainties up to 0.2 m/s.  

The best statistical reproducibility was delivered by the borescope which provided a large 

amount of data, producing nearly zero-width confidence intervals for all measurements. RPT, 

PEPT and optical probe provided larger, but reasonable, average confidence intervals, in the 

range of 10-20%. 

The data collected by the borescope for periods of 10 and 15 s are compared in Figure 13. These 

results indicate that the experiments are not very sensitive to the duration of the sampling time. 

In many cases, the radial profiles of particle velocity derived from the RPT, PEPT and 

borescopic techniques changed as a result of considering the vertical component of the tracer 

velocity when it crossed the measurement plane, rather than its velocity when it travelled with a 

small deviation angle with respect to the vertical direction. In some cases, the agreement between 

the results from these three techniques and the data from the optical probes was slightly better 

when all vertical components were considered.  

For RPT, the count number, defined as the number of times the tracer was detected in a certain 

defined region, changed significantly with the radial position, but to a minor extent with the 

filtering criteria. PEPT count number appears also to have been nearly insensitive to the filtering 

criteria. Both techniques provide the lowest count numbers in the core of the bed which is 

expected due to the presence of voids moving mainly in the centre of the column resulting in 

smaller probability for the tracer particle to be present in that region compared to others. The 

count number would decrease if, instead of considering the vertical components of all velocity 

vectors, 30 degree deviation at most from the vertical was included as a data filtering criterion. 

However, as shown in Figure 14, sufficiently big count number was obtained for both particle 

tracking techniques, even with the 30° angle from the vertical included as a filtering criterion. 
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Probability distribution functions (PDF) of the solid velocity at different positions obtained by 

each measurement technique are plotted in Figure 15. Note that for all cases, there was 

remarkable similitude between the PDFs of the two non-invasive techniques (RPT and PEPT). 

The PDFs of solid velocity obtained by the borescope were slightly shifted towards lower 

magnitude velocities, producing a different shape compared to the PDFs of the other techniques 

in most cases. The PDFs of solid velocity from the optical probe were generally more similar to 

those produced by the non-invasive techniques.    

Figure 16 reports the effect of exclusion of those velocities close to zero, not detected by the 

optical fibre probe, on some time-average radial profiles of particle velocity obtained by 

borescope, PEPT and RPT presented in Figures 4-7. This additional filtering, however, had a 

negligible effect on the reproducibility and statistical significance of the data since sufficient data 

points were still available for all of the techniques deployed.   

4.0 Discussion 

Consideration of the unique intrinsic characteristics and data processing methodologies 

associated with each of the four measurement techniques helps to explain some of the 

quantitative differences in the data provided by them. Measurement factors which contributed to 

the differences include the following: 

• The optical probe and borescopic probe are both intrusive, and therefore interfere to some 

extent with the flow field being measured, the nature and extent of the interference 

depending on such factors as probe shape, size, orientation and roughness, as well as the 

prevailing direction, velocity and particle volume fraction of the local gas-solid flow.  Also, 

electrostatic and van der Waals forces may cause particles to adhere to both the optical and 

borescopic probe surfaces, causing significant loss of data.  This was particularly a factor in 
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this study for FCC particles with the optical probe. 

• The PEPT and RPT methods rely on the tracer particle travelling in a manner that is 

perfectly representative of the bulk particles in the bed. However, as seen in Table 3, the 

diameter and density of the tracer particle used for RPT differed substantially from those of 

the main particles, with the tracer particle being considerably larger and denser, even 

belonging to a different Group, B, of the Geldart classification, characterized by different 

fluidization hydrodynamic features compared to the bulk FCC particles, which belong to 

Group A.  For PEPT measurements, the tracer particle size was well matched, but its 

density differed significantly. These differences in properties may have affected the 

measurements, e.g. influencing velocity fluctuations and acceleration, with negative impact 

on the accuracy of RPT, and, to a lesser extent, the PEPT data. In fact, the terminal velocity 

of the RPT tracer particle was 5.4 times greater, while that of PEPT tracer was 1.4 times 

smaller compared to the FCC particles. Better matching of particle/tracer properties in 

order to assure similar drag forces and acceleration is clearly important when measuring 

hydrodynamic properties of fluidized beds. 

• In order to be accepted as providing valid cross-correlation measurements, particles had to 

pass the optical probe nearly vertically.  No such restriction applies to the PEPT, RPT and 

borescopic probe techniques. 

• The optical probe is incapable of measuring velocities close to 0 because of the need to 

cross-correlate signals from two fibres. Again this restriction is absent for the other three 

techniques. Better agreement, especially between the borescope and optical probe radial 

profiles of time-average solid velocity, was obtained in some cases when particle velocities 

smaller than 0.023 m/s were excluded from the analysis of signals (Figure 16). PEPT and 
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RPT also exclude zero-magnitude velocities, since to cross the measurement level and be 

counted, the tracer must possess a non-zero vertical velocity. As discussed before and 

observable in the PDFs of solid velocity (Figure 15), the borescope tends to be slightly 

biased towards nearly-zero velocities, while the method of post-processing adopted with 

both PEPT and RPT produces results comparable with the optical probe. If instead of the 

crossing approach, the volume-based method had been used for PEPT and RPT post-

processing, the results would have shifted towards velocities of smaller magnitude. 

• For PEPT, the average resolution of the system given by location uncertainty was around 

3.3 mm, which is of the same order as the distance travelled by the particle during one time 

step at low particle velocities (<0.06 m/s). This may result in poor accuracy of detecting 

low solid velocities. An exact theoretical principle for optimising N as a function of particle 

speed may also be useful for improving the data analysis. 

• The four methods have different dependencies on particle volume fraction.  In a given time 

interval, the optical probe returns a particle velocity irrespective of whether there are only a 

few or many particles passing in the correct direction during that interval.  The velocities 

can therefore be considered to be “volume-fraction-independent”. Hence the optical probe 

is, for example, indifferent to whether the particle is travelling in the dense or dilute phase 

when it accepts a cross-correlation as giving a valid velocity. The borescope presents a 

slight volume-fraction dependency since the PIV algorithm needs a sufficient number of 

particles within the measurement volume. At low particle volume fractions, longer image 

collections times are needed, resulting in much larger image files (i.e. longer analysis 

times). Extremely dilute regions provide more freedom of movement in three-dimensional 

space, resulting in cases where particles present in one frame escape from the field of view 
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in the next frame. Otherwise, the borescope dependency on volume fraction is weak since, 

providing there are some particles within the measuring volume, their number is not 

important. On the other hand, in the RPT and PEPT methods, over long time periods, the 

tracer particle passes more times through regions of high flux than in low-flux regions. 

Thus the measurements may be more accurate in high-flux regions because of averaging 

over more data, but the values over long time periods should be “flux independent”. If we 

compare optical and borescopic probes, the borescope has a significantly larger measuring 

volume, resulting in some spatial averaging that is not a consideration for the optical probe. 

Also, the detection of movement of particles far from the tip of the borescope is difficult 

because of the short focal length. This happens mostly when dilute phase passes the 

borescope, and is less of a factor for the optical probe, which relies on the intensity of 

reflected light, and to a much lesser extent on focus. 

• FCC particles tended to adhere to probes, as noted above. Perhaps as a result, the FCC 

particles gave low optical fibre correlation coefficients, with 35% valid data, compared to 

65% for sand. Worse matching between the optical fibre diameter and particle diameter for 

the FCC may also have been a contributing factor. 

• Friction along the tip of the borescope and optical probe may also have restrained particle 

movement. 

• Considering all of these factors and the significant differences among the quantitative data, 

it is clear that none of the experimental techniques is perfect. Experimental limitations need 

to be considered when comparing predictions of CFD and other models with experimental 

measurements.  
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5.0 Conclusions 

Optical fibre probes, radioactive particle tracking, positron emission particle tracking and 

borescopic high-speed PIV were deployed to investigate local particle velocities in a “traveling 

fluidized bed” operated under identical conditions at four locations with the same FCC particles 

(Geldart Group A powder). Fair agreement among the results of the four experimental techniques 

was found, but there were some significant quantitative differences. Likely reasons for these 

discrepancies include invasiveness of two of the methods, differences between the physical 

properties of tracer particles and the bulk bed material, different sensitivities to the angle of 

travel and concentration of particles in the measurement zone, unequal measurement volumes, 

and differences in acceptance algorithms. Analysis of the data leads to valuable insights on the 

merits and physical features of each of the measurement techniques. For most cases examined, 

the data obtained by RPT, borescopy and optical probes and, to a lesser extent, PEPT presented 

fair agreement with each other, delineating the range of solid velocities to be expected in this 

system at different superficial gas velocities. Therefore, the results of this study help to provide 

an experimental hydrodynamic database useful for testing the validity of CFD and other models. 
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Nomenclature 

dsauter  Sauter mean particle diameter, µm 

dfibre  external diameter of optical probe fibres, µm 

dprobe  external diameter of optical probe, mm 

E  error of cross-correlation, m/s 

f  sampling frequency necessary for optical probes, Hz 

fopt  final fraction of γ-ray sample, - 

Ip  interval of measurable velocities using optical probe, m/s 

Iw  interval of measurable velocities in wall region using optical probe, m/s 

Le  effective distance between receiving ends of optical probe, m 

M  multiplicand for time-lag, - 

ms  minimum distance point, mm 

N  initial sample size, - 

iP
�

  PEPT tracer particle location vector, mm 

Tint  integration time, s 

Uc  superficial gas velocity at transition to turbulent flow regime, m/s 

vp  local instantaneous particle velocity, m/s 

vp,min  minimum particle velocity measurable by optical probe, m/s 

vp,max  maximum particle velocity measurable by optical probe, m/s 

vp,x, vp,y, vp,z coordinates of instantaneous vector of tracer particle velocity, m/s 

w  positron camera resolution, mm 

x,y,z  spatial coordinates of instantaneous tracer position, m 

∆  location precision for PEPT, mm 
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ρ  gas density, kg/m
3
 

ρp  particle density, kg/m
3
 

τl  time-lag between two signals of optical probes, s  
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Figure 1-Traveling fluidized bed (TFB) column: a) assembled; b) exploded modular view. 
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Figure 3 – Velocity vectors obtained by PIVlab in a region of interest for FCC particles 

Figure 2 – Sensitivity to measurement angle of optical probe 
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Figure 4 – Radial profiles of time-average solid velocity at 

three levels for FCC, Ug = 0.30 m/s. 
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Figure 5 – Radial profiles of time-average solid velocity at 

three levels for FCC, Ug = 0.40 m/s 
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Figure 6 – Radial profiles of time-average solid velocity at 

three levels for FCC, Ug = 0.50 m/s 
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Figure 7 – Radial profiles of time-average solid velocity at 

three levels for FCC, Ug = 0.60 m/s 
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Figure 8 – Radial profiles of time-average solid velocity at 

three levels for FCC based on vertical components of 

velocity vectors, Ug = 0.30 m/s 
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  Figure 9 – Radial profiles of time-average solid velocity at 

three levels for FCC based on vertical components of 

velocity vectors, Ug = 0.40 m/s 
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  Figure 10 – Radial profiles of time-average solid velocity at 

three levels for FCC based on vertical components of 

velocity vectors, Ug = 0.50 m/s 
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  Figure 11 – Radial profiles of time-average solid velocity at 

three levels for FCC based on vertical components of 

velocity vectors, Ug = 0.60 m/s 
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Figure 13 – Effect of the sampling time on the time-averaged particle velocity measured 

by the borescope. FCC: a) Ug = 0.40 m/s, z=0.4m, r/R=0.77; b) Ug = 0.60 m/s, z=0.4m, 

r/R=0; c) Ug = 0.30 m/s, z=0.24m, r/R=0.33 

Figure 12 – Overall percent deviation for different superficial gas velocities. Considering: 

a) Velocities with a deviation angle of less than 30 degrees from the vertical; b) Vertical 

components of the velocities 
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Figure 14 - Count number for RPT and PEPT in different annuli 

with different filtering criteria, Ug = 0.40 m/s, z = 0.40 m 
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Figure 15 – Examples of probability distribution function of solid velocity 
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 Figure 16 – Radial profiles of time-average solid velocity at 

three levels for FCC excluding zero velocities 

 



 A novel travelling fluidized bed was built to ensure identical operating conditions 

 The equipment traveled to different laboratories for hydrodynamic investigation 

 The most advanced particle velocity measurement techniques are directly compared 

 The reasons underlying observed discrepancies among the results are discussed 

 A comprehensive experimental database for model testing is extended 
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