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Abstract 

The novel “travelling fluidized bed” (TFB), operated under identical conditions, was deployed to 

compare alternate experimental measurement techniques for the investigation of solid motion in 

gas-fluidized beds operating in the square-nosed slugging regime. Measurements of particle 

velocity obtained by radioactive particle tracking (RPT – non-invasive at the Ecole 

Polytechnique de Montréal), positron emission particle tracking (PEPT – non-invasive at 

University of Birmingham), optical fibre probes (invasive at UBC) and borescopic high speed 

particle image velocimetry (invasive at PSRI) are compared for sand particles of mean diameter 

292 μm. Significant differences between the time-average radial profiles of particle velocity are 

observed in many cases. The results provide valuable insights on the merits and challenges of 

advanced particle velocity measurement techniques.  

Keywords: Fluidization; Square-nosed slugging; Particle velocity; Optical probes; Particle 

tracking; Borescopy  
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1. Introduction 

Among the hydrodynamic features characterizing gas-fluidized beds, particle velocity represents 

a key parameter which influences heat transfer, gas-solids mixing, erosion, attrition, solids 

entrainment and particle flux [1].  

Various techniques have been investigated for measuring particle velocity in gas-fluidized beds 

using invasive and non-invasive methods [2]. Invasive techniques based on probing methods 

represent a good candidate for monitoring plant performance and process optimization in 

industrial units. However, the degree of flow interference from the probes must be quantified by 

direct comparison with other techniques employed on the same equipment under identical 

operating conditions [1,3]. Reliability of non-invasive particle tracking techniques for 

representing the solid motion should also be investigated. Direct comparison with other 

techniques represents the most suitable approach.     

Except for our group’s recent work on voidage and particle velocity measurements [1,3], there 

have been few attempts to systematically compare different measurement techniques in the past. 

Werther et al. [4] compared solid velocity measurements obtained by a laser doppler anemometer 

(LDA) and a single fibre reflection probe in the dilute zone of a circulating fluidized bed riser. 

These experiments were performed under identical conditions with the same equipment. 

However, the comparison could not be performed for high-solid-concentration flows since LDA 

is effective only for dilute suspensions. Panday et al. [5] compared the time-average solid 

velocity in a CFB obtained by a dual multi fibre optical probe with data obtained by high-speed 

particle image velocimetry. Good agreement was observed between the results of these two 

techniques, but the comparison was limited to one operating condition and few locations.     
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In this study, four different experimental techniques  radioactive particle tracking (RPT) a non-

invasive technique available at the Ecole Polytechnique de Montréal, Positron emission particle 

tracking (PEPT), a non-invasive technique developed at the University of Birmingham, optical 

fibre probes, an invasive technique deployed at the University of British Columbia (UBC), and 

borescopic high-speed particle image velocimetry (PIV), an invasive measurement technique 

owned and operated by Particulate Solid Research Inc. (PSRI)  were employed to investigate 

particle vertical motion in the travelling fluidized bed (TFB) facility. This equipment and its 

auxiliaries were designed and built to assure identical operation in different locations where 

alternative experimental measurement techniques are available.  

In this paper, radial profiles of time-average particle velocity and the probability distribution 

function of solid velocity obtained by all four techniques are directly compared. Particle velocity 

results obtained from the TFB with fluid cracking catalyst (FCC) particles are presented 

elsewhere [1]. In this paper, the TFB experiments were performed with a Geldart group B 

particulate material, sand particles which differed greatly in properties from the group A particles 

investigated separately [1]. This resulted in a different flow regime and different solid velocity 

profiles. In particular, for the operating conditions of interest, the sand particles exhibited the 

square-nosed slugging flow regime typical of Geldart B particles fluidized at superficial gas 

velocities (Ug) greater than the minimum slugging velocity (Ums), satisfying the criteria for 

reaching the slug flow regime [6]. This type of slug flow is regarded as a breakdown of proper 

fluidization, where high pressures and high interstitial flow rates may break up the dense phase 

regions releasing pockets of gas, resulting in unstable behaviour. This flow regime, mainly 

observed in laboratory and pilot scale fluidized beds and of interest for few applications [7,8], 

provides a useful platform for satisfying the main objective of the study, which is to compare 
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experimental the features of a number of the most advanced particle velocity measurement 

techniques under identical operating conditions.  Analysis of the results, focusing on the physical 

principles underlying each experimental technique and taking into account global flow structures 

of the multiphase system, provides valuable insights into the reasons for the observed 

discrepancies. 

2. Experimental 

The experimental apparatus consists of the easily-disassembled fluidization column, its support 

structure, basic instrumentation and auxiliary components, all of which travelled with silica sand 

(dsauter = 292 μm, ρp = 2640 kg/m
3
) particles (as well as FCC powder) to different research 

laboratories for experimentation using different sophisticated instrumentation. The travelling 

fluidized bed apparatus, shown schematically in Figure 1, features a transparent plexiglass 

column of 0.96 m length × 0.133 m i.d. dense bed section, surmounted by a 1.36 m long × 0.190 

m i.d. freeboard section. An internal cyclone with its dipleg terminating in the dense section 

(0.70 m above the distributor) was employed to capture any entrained particles. Detailed 

description of the apparatus, and its auxiliary components are given elsewhere [1,9]. Details of 

the measurement techniques used to determine particle velocity  optical fibre probes, 

borescopic high-speed PIV, PEPT and RPT  are given elsewhere [1]. Table 1 summarizes the 

key features of each of these experimental techniques. The optical probe, borescope and RPT 

solid tracer used in the previous study with FCC powder [1] were used again in this paper for 

sand.  
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Table 1 – Summary of particle velocity measurements techniques characteristics. In each 

case, measurements were at 0.24, 0.40 and 0.56 m above the distributor and at superficial 

gas velocities of 0.40, 0.50 and 0.60 m/s. The static bed height was 0.82 m for all cases. 

 Borescopic high-

speed PIV 
Optical fibre probe RPT PEPT 

Sampling 

rate 
3000 frame/s 15.6 kHz (wall region) 

62.5 (other positions) 
100 Hz Variable up to 

500 Hz 

Sampling 

period  
10 s (10 × 1 s 

intervals) 
40 s (80 × 0.5 s intervals) 8 h (2 × 4 h) 3.5 h (3 × 1 h + 1 

× 0.5 h) 

The minimum fluidization velocity of the sand particles was 0.0796 m/s [9], and all the operating 

superficial gas velocities investigated were less than Uc (0.72 m/s), the superficial gas velocity 

corresponding to onset of the turbulent fluidization flow regime, obtained from pressure 

fluctuation data [3,9], and above Ums (0.16 m/s), the minimum slugging velocity, calculated from 

the correlation of Stewart and Davidson [6]. As visually observed from X-ray images [10], 

typical of Geldart B particles [11] in smooth-walled columns of high H/D, the sand particles 

exhibited square-nosed slugging behaviour, with dense plugs occupying the entire cross-section 

of the bed moving upwards and solids raining from the bottom through the slug.  

The tracer used for the PEPT study with sand differed from that used for FCC powder in order to 

better match the physical properties of the bulk solids. Sand particles could not be activated 

enough for the PEPT experiments. Therefore, aluminum oxide, in super-activated base form 

(gamma-alumina) with properties given in Table 2, was used as the tracer particle. The size and 

shape of this tracer particle matched well the bulk solid mean diameter, but its density was 

higher. The RPT tracer particle differed in shape, diameter and density from the sand particles, as 

shown in Table 2. Considering the sensitivities of the systems when the experiments were 

performed, the tracer particles employed for both RPT and PEPT represented the best available 
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substitutes for sand particles. For the RPT and PEPT experiments, a single tracer particle was 

added to the system and its motion followed by the detectors.   

Table 2 – Comparison of key physical properties of bed material and RPT and PEPT 

tracer particles  

 Sand PEPT Tracer RPT Tracer 

Composition 99.9% SiO2 γ-Al2O3 Pure scandium dipped in epoxy 

dsauter (μm) 292 300 400 

ρp (kg/m
3
) 2640 3000 2000 

shape Irregular Irregular Nearly spherical 

Ut (m/s) 0.73 0.91 2.35 

Radioactivity (mCi) 0 
1.34 (1

st
 day)  

0.60 (2
nd

 day) 
0.20 

The sand particles were white, producing bright images without proper contrast in the borescopic 

imaging, resulting in poor particle boundary distinction. Antipolar filters mounted on the 

borescope window did not improve the image quality. The best solution in terms of the image 

contrast was achieved by colouring all the particles using a dark red PSRI proprietary dye. 

Application of this dye did not appreciably alter the particle diameter or density.  

The same data analysis techniques as were described by Tebianian et al. [1] for the FCC 

particles, were employed for the sand particles.    

3. Results 

3.1 Radial profiles of time-average particle velocity  

Radial profiles of time-average particle velocity obtained by all four experimental techniques are 

reported in Figures 2 to 4. Axial symmetry is assumed in each of these figures. As for FCC 

particles [1], the results from the borescope, PEPT and RPT results in these plots only include 

velocity vectors associated with solid motion with a deviation angle with respect to the vertical 
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direction of 30 degrees or less. As for FCC particles [1], considering each measurement level, the 

time-averaged particle velocity profiles have been determined by considering the average 

velocity obtained from the motion of all particles moving almost vertically in a specific radial 

location, without distinguishing whether they were moving in the dense plug or the dilute region, 

given that the simultaneous voidage data are not obtainable from particle tracking techniques. 

The measurement locations of the optical probe and the borescope were points along a diameter 

of the bed while for RPT and PEPT the measurements were obtained in five concentric areas into 

which the cross-section was divided. The radial positions of PEPT and RPT particle velocity 

profiles correspond to the centres of these concentric annuli. The error bars for the RPT, 

borescope and optical fibre probe represent 90% confidence intervals, obtained by considering 

the whole sample of velocity vectors in the time series data recorded during the measurement 

period for each measurement location. For PEPT, since the location precision was available for 

each instantaneous tracer position, the uncertainty in the solid velocity was determined using the 

same error propagation formula as for FCC powder [1]. 

The solid raining associated with the square-nosed slug flow regime produced, mainly for the 

upper sections of the column, an unusual trend, with pronounced negative time-average solid 

velocity at all radial positions. However, although the measured velocities were mostly negative, 

solids flux data [12] indicate that the upward and downward mass fluxes averaged over time and 

the cross-section were in balance, as expected when entrainment fluxes are low.    

For Ug = 0.40 m/s, the results obtained by RPT, the optical probe and borescopy are in good 

qualitative and quantitative agreement at the lowest measurement level (z = 0.24 m), where these 

three techniques provide downward solid velocity near the wall and upward velocities in the 

centre of the bed, typical of bubbling fluidized beds (Figure 2). The poorest agreement between 
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the results was observed at 0.40 m above the distributor plate where a quasi-flat radial profile 

was observed for all four techniques due to the uniform upward motion of particles in the dense 

plugs and downwards motion resulting from particles raining in the slugs, with PEPT providing 

the most negative values, RPT and borecope results close to zero, and the optical probe results in 

the middle. For all three measurement levels, the profiles obtained by RPT and borescopy are 

quite close to each other, as shown in Figure 2. 

For Ug = 0.50 m/s, agreement among the results of the borescopy, RPT and optical probe at the 

lowest measurement height is slightly worse than for Ug = 0.40 m/s, where some signs of 

downward solid velocity in the core region are observable from the optical probe radial profile. 

At the upper measurement section (z = 0.56 m), there is poor agreement among the results in the 

wall region relative to the central region where the profiles obtained by all four techniques were 

closer to each other. Similar behaviour to that shown in Figure 2 for z = 0.40 m was  observed for 

Ug = 0.50 m/s in Figure 3, where PEPT produced negative values of greater magnitude than the 

other three techniques for most cases.  

For Ug = 0.60 m/s (Figure 4), radial profiles of solid velocity at z = 0.24 and 0.40 m presented 

similar behaviour as described for Ug = 0.50 m/s. At the upper measurement level, solid raining 

in the central region of the bed was less prominent compared to the two lower superficial gas 

velocities investigated.  

Since the optical fibre probe detects only the vertical motion of particles, the data were also 

analyzed by averaging the vertical component of all velocity vectors of particles that cross the 

measurement level for the borescope, PEPT and RPT (i.e. by removing the restriction of 

diverging by ≤30˚ from the vertical). However, except for a few cases in Figure 5 (comparable to 
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the Figures 2 and 3 results at the lowest measurement level), there was no significant change in 

the results, suggesting that contributions from non-vertical particle velocities were minimal. 

3.2 Probability distribution function of solid velocity 

Probability distribution functions (PDF) of the instantaneous solid velocity measured at different 

positions obtained by each measurement technique are plotted in Figure 6. All four techniques 

detected particles raining inside the slugs, giving bimodal PDFs. The optical probe and PEPT 

detected downward velocities of greater magnitude than RPT and the borescopic high-speed PIV, 

especially in the middle section of the column (z = 0.40 m). PEPT, borescopy and optical probe 

detected similar upward velocities, whereas RPT presented more wide-ranging data, i.e. more 

prominent “tails”. 

Figure 7 shows instantaneous movement of the particles in the central region of the bed captured 

by the optical probe and the borescope. The sampling time consisted of ten periods of 1 s 

duration for the borescope and 80 periods of only 0.5 s duration for the optical probe. Continuous 

data capture giving a complete picture of the slugging phenomena and the raining phenomenon 

was not possible in either case. Nevertheless, the plots still portray the intermittency of upward 

velocities associated with the roof and floor regions of slugs interspersed with downward motion 

caused by particles raining inside the voids. Note that the actual time intervals between 

successive bursts (random for the optical probe and 5.67 s for the borescopy) are not represented 

in the plots in order to facilitate the visualization of the slugging phenomena.  

The presence of the slugs for sand particles was further confirmed by the pressure fluctuation 

data in Figure 8, with the frequency confined to a narrow range of lower frequencies, more 

characteristic of slug flow, than for the FCC particles. The differential pressure was measured at 
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different 0.16 m-height sections of the column. The zero-magnitude pressure drop observed 

regularly for sand particles corresponds to the passage of the square-nosed slugs covering the 

entire section across which the differential pressure transducer was measured. It can be observed 

that unlike FCC powder, for sand particles the pressure drop was zero for almost 1 s, indicating 

that the slug heights exceeded the height of the measurement interval of the pressure transducers. 

The pressure fluctuations data of FCC powder reported in Figure 8 confirm the presence of a 

more chaotic flow regime typical of turbulent fluidization, as reported in the previous study [1]. 

Figure 9 represents the instantaneous velocity of the tracer particle passing the level 0.56 m 

above the distributor for both RPT and PEPT. PEPT shows a higher density of upward velocities, 

with an almost constant value and more scattered downward velocities characterized by bigger 

magnitudes. RPT, as indicated also in the PDFs, presents more symmetrical velocity vectors with 

respect to zero and a smaller count frequency than PEPT.  

4. Discussion 

Consideration of the unique characteristics of each of the four measurement techniques, taking 

into account the presence of square-nosed slugging flow regime, helps to explain the quantitative 

differences in the data yielded by these four advanced methods. Factors which have contributed, 

at least in part, to the differences include: 

 The optical probe and borescopic probe are both intrusive, and therefore interfere to some 

extent with the flow field being measured. The degree of interference depends on factors 

such as the probe shape, size and orientation, velocity and void fraction of the local gas-

solid flow [10]. 
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 The PEPT and RPT methods rely on the tracer particle travelling in a manner that is 

identical to the other particles in the bed. However, as seen in Table 2, the shape, diameter 

and density of the tracer particle used for RPT differed substantially from those of the bulk 

particles, with the tracer particle being considerably larger and less dense. This was the best 

tracer particle available with RPT system when these experiments were performed. 

However, note that the RPT tracer preparation method has been improved since then, with 

the ability to produce tracer particles with properties closer to those of the bed material. For 

the PEPT measurements, the tracer particle size and shape were well matched, but its 

density was higher. These differences in particle properties may have affected the 

measurements, e.g. influencing velocity fluctuations and acceleration, thereby preventing 

the tracer from faithfully representing the behaviour of the bed material. Particle tracking 

techniques require close matching of all three key particle physical properties (size, shape, 

density) for accurate determination of particle motion by following the motion of a tracer 

particle. Note also that an ideal radioactive tracer particle only represents a single average 

size and density of the sand particles; whereas the optical probe and borescope measure the 

velocities of all particles present in the bed. The terminal velocity (Ut) of the RPT and, to a 

lesser extent, PEPT tracer particles in air was greater than that of the bulk sand particles. 

However, the terminal velocity only accounts for a combination of tracer density and 

diameter (slightly more important) given in the drag coefficient expression. As  reported by 

Rowe and Nienow [13], the density difference is considerably more important than the size 

difference in determining solid segregation in gas-fluidized beds. The tracer particles 

employed in the RPT and PEPT experiments differed significantly in terms of density 

which can produce different circulation patterns, regardless of the degree of similarity of 
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terminal velocities. In fact, as shown in Figure 9, the count frequency, defined as the 

number of times the tracer particle was detected in a certain region over the entire sampling 

time, obtained by PEPT was more than twice that of RPT.  One reason leading to this could 

have been less “mobilization” of the RPT tracer particle, possibly due to its greater 

diameter. Sand particles may also have abraded the tracer particles modifying their shape 

during the operation of the system. 

 The sampling rate of the RPT system was fixed and equal to 100 Hz, whereas the PEPT 

detection rate was variable and could reach rates as high as 500 Hz. Suppose that the tracer 

displacement during time-steps Δt1 and Δt2 are 1x and 2x , respectively, where Δt1 + Δt2 

= Δt = 10 ms. RPT detects the mean tracer movement associated with Δt given by

1 2( ) /x x t   , whereas PEPT can detect two velocity vectors Δx1 /Δt1 and Δx2 /Δt2. 

Generally 1 2 1 1 2 2( ) / ( / , / )x x t mean x t x t        . This difference may result in 

different velocities evaluated by PEPT and RPT. Note that recent modifications in RPT 

system mean that higher sampling frequencies could now be achieved. 

 As reported in Tables 1 and 2, tracer radioactivity, detection instrumentation and the 

localization algorithm employed by the two particle tracking techniques (RPT and PEPT) 

differed substantially, possibly resulting in different detected tracer velocities over the 

sampling time as shown in Figure 9. 

 The average resolution of the PEPT system given by location uncertainty was between 2.7 

and 4.3 mm for different runs, which was of the same order as the distance travelled by the 

particle during one time step at low velocities (< 0.06 m/s). This may have resulted in poor 
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accuracy when detecting low solid velocities. Instantaneous location uncertainty of RPT 

data was not available, but RPT applied to systems similar to the TFB [14] presented a 

spatial resolution of around 6 mm, which may lead to similar lack of accuracy. 

 The four methods have different dependencies on particle volume fraction, as discussed in 

our previous work [1]. The PIV algorithm used to analyse the borescopic images requires a 

sufficient number of particles in the measurement volume for accurate velocity 

determination [15]. Detection of the movement of solids far from the borescope tip is 

challenging due to loss of focus. The velocities measured by the optical probe can be 

considered to be “volume-fraction-independent” since, in a given time interval, a particle 

velocity is returned irrespective of the number of particles passing in the correct direction 

during that interval. On the other hand, in the RPT and PEPT methods, over a certain time 

period, the tracer particle spends more time in regions of high flux than in low-flux regions. 

Therefore, RPT and PEPT are “flux-dependent”.  

 The Fast Fourier Transform (FFT) analysis performed on the time-series of pressure 

fluctuations of the system suggests a dominant frequency in the range of [0.40-0.43 Hz] for 

passage of slugs, as shown for example in Figure 8, corresponding to a time-interval 

between arrival of slugs of 2.3 to 2.5 s, though with surrounding peaks of higher frequency. 

The time interval between successive acquisitions (of duration of 1 s) was 5.67 s for the 

borescopy, i.e. one measurement every 6.67 s. This may have led to some aliasing in the 

borescope data, with successive measurements tending to favour one phase. The optical 

probe data did not present the same aliasing issue since its data were captured randomly 

over a longer sampling period. RPT and PEPT data samplings were continuous for long 

periods of time, again preventing the aliasing problem. 
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 Raining of particles inside the slugs (extremely dilute region) played a prominent role in 

the determining the values of time-average solid velocity (Figures 7 - 9). Negative particle 

velocities in the interior of the column are detected more accurately when flux-independent 

or concentration-independent measurement techniques encounter such flows. It can 

observed that there is significantly better agreement between the results of RPT, borescopy 

and optical probe in the lower region of the bed where the slugs have not yet formed and 

upward movement of the particles in the middle of the bed is dominant (rising with bubble 

noses and wakes). The profiles obtained by all four techniques are closer in the upper 

region than in the middle section (z = 0.40 m). This could be due to the presence of the 

cyclone dipleg terminating at z = 0.70 m that could have contributed to slug break-up and 

reduced particle raining [9].  

5. Conclusion 

Radioactive particle tracking, positron emission particle tracking, optical fibre probe and 

borescopic high-speed PIV were deployed to investigate local particle velocities in a novel 

traveling fluidized bed operated under identical experimental conditions with sand particles (a 

Geldart Group B powder). Significant quantitative differences were observed among the radial 

profiles of time-average velocity provided by the four techniques, especially in the middle 

section of the bed. Likely reasons for these differences include invasiveness of two of the 

methods, differences between the physical properties of the tracer and sand particles, differences 

in sensitivity to the concentration of particles in the measurement zone, spatial resolution of the 

particle tracking systems and differences in measurement volumes. The analysis of the data gives 

valuable insights into the features of each measurement technique.  
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The scatter of the data, especially in the middle section, limits the usefulness of these results as 

benchmarks for CFD validation. However, direct comparison of the results provides useful 

information for the future deployment of these techniques in the investigation of particle 

velocities in gas-fluidized beds.  
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Nomenclature 

D  Column diameter, m 

dsauter  Sauter mean particle diameter, μm 

H  Static bed height, m 

Uc  superficial gas velocity at transition to turbulent fluidization flow regime, m/s 

Ug  superficial gas velocity, m/s 

Ums  minimum slugging velocity, m/s   

Ut  terminal settling velocity in air, m/s 
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x   tracer particle displacement, m 

t   time lag between successive tracer detections, ms 

ρp  solid density, kg/m
3 

z  vertical coordinate measured from top of gas distrbutor, m 

Acronyms 

FCC  fluid cracking catalyst 

FFT  Fast Fourier Transform 

PDF  probability distribution function 

PEPT  positron emission particle tracking 

PIV  particle image velocimetry 

PSRI  Particulate Solid Research Inc. 

RPT  radioactive particle tracking 

TFB  travelling fluidized bed 

UBC  University of British Columbia 
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Figure 1 – Schematic diagram of travelling fluidized bed apparatus: a) 

assembled; b) exploded modular view. Adapted from Tebianian et al. [1] 
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Figure 2 – Radial profiles of time-average solid velocity at 

three levels for sand, Ug = 0.40 m/s 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

21 

 

 

z = 0.56 m

-0.8

-0.6

-0.4

-0.2

0.0

0.2

z = 0.24 m

r/R

0.0 0.2 0.4 0.6 0.8 1.0
-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Optical probe 

Borescope 

RPT 

PEPT 

z = 0.40 m

T
im

e
-a

v
e

ra
g

e
 p

a
rt

ic
le

 v
e

lo
c

it
y

 (
m

/s
)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

 

Figure 3 – Radial profiles of time-average solid velocity at 

three levels for sand, Ug = 0.50 m/s 
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Figure 4 – Radial profiles of time-average solid velocity at 

three levels for sand, Ug = 0.60 m/s 
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Figure 5 – Radial profiles of time-average solid velocity at 

three levels for sand based on vertical components of 

velocity vectors 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

24 

 

Sand, U
g

 = 0.40 m/s, z = 0.24 m, r/R = 0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0

10

20

30

40

50

60

Sand, U
g

 = 0.60 m/s, z = 0.56 m, r/R = 0

Particle velocity (m/s)

-2 -1 0 1 2

0

5

10

15

20

25

30

Optical probe

Borescope

RPT

PEPT

Sand, U
g

 = 0.50 m/s, z = 0.4 m, r/R = 0.6

-3 -2 -1 0 1 2 3

P
ro

b
a

b
il
it

y
 (

%
)

0

5

10

15

20

25

 

Figure 6 – Examples of probability distribution function of solid velocity 
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Figure 7 – Solid velocity time series obtained by: a) Optical probe; b) Borescope. Note 

that the traces are not continuous, but broken into bursts of duration 1s for the borescope 

and 0.5 s for the optical probe. 
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Figure 8 – Pressure fluctuation data and FFT analysis for sand and FCC particles 

at Ug = 0.50 m/s between z = 0.24 and z = 0.56 m. Expanded bed height was 1.17 

m. 
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Figure 9 – PEPT and RPT tracer velocity crossing the level z = 0.56 m 

during the entire sampling period  
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Highlights 

 Identical operating conditions were achieved in different locations  

 The hydrodynamics of the square-nosed slugging flow regime were investigated 

 Advanced particle velocity measurement techniques give different results 

 The reasons for the observed discrepancies among the results are explored 


