16 research outputs found
Oligosaccharide recognition and binding to the carbohydrate binding module of AMP-activated protein kinase
AbstractThe AMP-activated protein kinase (AMPK) contains a carbohydrate-binding module (β1-CBM) that is conserved from yeast to mammals. β1-CBM has been shown to localize AMPK to glycogen in intact cells and in vitro. Here we use Nuclear Magnetic Resonance spectroscopy to investigate oligosaccharide binding to 15N labelled β1-CBM. We find that β1-CBM shows greatest affinity to carbohydrates of greater than five glucose units joined via α,1→4 glycosidic linkages with a single, but not multiple, glucose units in an α,1→6 branch. The near identical chemical shift profile for all oligosaccharides whether cyclic or linear suggest a similar binding conformation and confirms the presence of a single carbohydrate-binding site
Structure of full-length wild-type human phenylalanine hydroxylase by small angle X-ray scattering reveals substrate-induced conformational stability
Human phenylalanine hydroxylase (hPAH) hydroxylates l-phenylalanine (l-Phe) to l-tyrosine, a precursor for neurotransmitter biosynthesis. Phenylketonuria (PKU), caused by mutations in PAH that impair PAH function, leads to neurological impairment when untreated. Understanding the hPAH structural and regulatory properties is essential to outline PKU pathophysiological mechanisms. Each hPAH monomer comprises an N-terminal regulatory, a central catalytic and a C-terminal oligomerisation domain. To maintain physiological l-Phe levels, hPAH employs complex regulatory mechanisms. Resting PAH adopts an auto-inhibited conformation where regulatory domains block access to the active site. l-Phe-mediated allosteric activation induces a repositioning of the regulatory domains. Since a structure of activated wild-type hPAH is lacking, we addressed hPAH l-Phe-mediated conformational changes and report the first solution structure of the allosterically activated state. Our solution structures obtained by small-angle X-ray scattering support a tetramer with distorted P222 symmetry, where catalytic and oligomerisation domains form a core from which regulatory domains protrude, positioning themselves close to the active site entrance in the absence of l-Phe. Binding of l-Phe induces a large movement and dimerisation of regulatory domains, exposing the active site. Activated hPAH is more resistant to proteolytic cleavage and thermal denaturation, suggesting that the association of regulatory domains stabilises hPAH.publishe
Cell-free protein synthesis of membrane (1,3)-beta-D-glucan (curdlan) synthase: Co-translational insertion in liposomes and reconstitution in nanodiscs
A membrane-embedded curdlan synthase (CrdS) from Agrobacterium is believed to catalyse a repetitive addition of glucosyl residues from UDP-glucose to produce the (1,3)-β-d-glucan (curdlan) polymer. We report wheat germ cell-free protein synthesis (WG-CFPS) of full-length CrdS containing a 6xHis affinity tag and either Factor Xa or Tobacco Etch Virus proteolytic sites, using a variety of hydrophobic membrane-mimicking environments. Full-length CrdS was synthesised with no variations in primary structure, following analysis of tryptic fragments by MALDI-TOF/TOF Mass Spectrometry. Preparative scale WG-CFPS in dialysis mode with Brij-58 yielded CrdS in mg/ml quantities. Analysis of structural and functional properties of CrdS during protein synthesis showed that CrdS was co-translationally inserted in DMPC liposomes during WG-CFPS, and these liposomes could be purified in a single step by density gradient floatation. Incorporated CrdS exhibited a random orientation topology. Following affinity purification of CrdS, the protein was reconstituted in nanodiscs with Escherichia coli lipids or POPC and a membrane scaffold protein MSP1E3D1. CrdS nanodiscs were characterised by small-angle X-ray scattering using synchrotron radiation and the data obtained were consistent with insertion of CrdS into bilayers. We found CrdS synthesised in the presence of the Ac-AAAAAAD surfactant peptide or co-translationally inserted in liposomes made from E. coli lipids to be catalytically competent. Conversely, CrdS synthesised with only Brij-58 was inactive. Our findings pave the way for future structural studies of this industrially important catalytic membrane protein.Agalya Periasamy, Nadim Shadiac, Amritha Amalraj, Soňa Garajová, Yagnesh Nagarajan, Shane Waters, Haydyn D.T. Mertens, Maria Hrmov
Structural model of human dUTPase in complex with a novel proteinaceous inhibitor
Human deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase), essential for DNA integrity, acts as a survival factor for tumor cells and is a target for cancer chemotherapy. Here we report that the Staphylococcal repressor protein StlSaPIBov1 (Stl) forms strong complex with human dUTPase. Functional analysis reveals that this interaction results in significant reduction of both dUTPase enzymatic activity and DNA binding capability of Stl. We conducted structural studies to understand the mechanism of this mutual inhibition. Small-angle X-ray scattering (SAXS) complemented with hydrogen-deuterium exchange mass spectrometry (HDX-MS) data allowed us to obtain 3D structural models comprising a trimeric dUTPase complexed with separate Stl monomers. These models thus reveal that upon dUTPase-Stl complex formation the functional homodimer of Stl repressor dissociates, which abolishes the DNA binding ability of the protein. Active site forming dUTPase segments were directly identified to be involved in the dUTPase-Stl interaction by HDX-MS, explaining the loss of dUTPase activity upon complexation. Our results provide key novel structural insights that pave the way for further applications of the first potent proteinaceous inhibitor of human dUTPase
Conformational analysis of a genetically encoded FRET biosensor by SAXS
Genetically encoded FRET (Foerster resonance energy transfer) sensors are exciting tools in modern cell biology. Changes in the conformation of a sensor lead to an altered emission ratio and provide the means to determine both temporal and spatial changes in target molecules, as well as the activity of enzymes. FRET sensors are widely used to follow phosphorylation events and to monitor the effects of elevated calcium levels. Here, we report for the first time, to our knowledge, on the analysis of the conformational changes involved in sensor function at low resolution using a combination of in vitro and in cellulo FRET measurements and small-angle scattering of x rays (SAXS). The large and dynamic structural rearrangements involved in the modification of the calcium- and phosphorylation-sensitive probe CYNEX4 are comprehensively characterized. It is demonstrated that the synergistic use of SAXS and FRET methods allows one to resolve the ambiguities arising due to the rotation of the sensor molecules and the flexibility of the probe
A high-resolution solution structure of a trypanosomatid FYVE domain
FYVE domain proteins play key roles in regulating membrane traffic in eukaryotic cells. The FYVE domain displays a remarkable specificity for the head group of the target lipid, phosphatidylinositol 3-phosphate (PtdIns[3]P). We have identified five putative FYVE domain proteins in the genome of the protozoan parasite Leishmania major, three of which are predicted to contain a functional PtdIns(3)P-binding site. The FYVE domain of one of these proteins, LmFYVE-1, bound PtdIns(3)P in liposome-binding assays and targeted GFP to acidified late endosomes/lysosomes in mammalian cells. The high-resolution solution structure of its N-terminal FYVE domain (LmFYVE-1[1–79]) was solved by nuclear magnetic resonance. Functionally significant clusters of residues of the LmFYVE-1 domain involved in PtdIns(3)P binding and dependence on low pH for tight binding were identified. This structure is the first trypanosomatid membrane trafficking protein to be determined and has been refined to high precision and accuracy using residual dipolar couplings