190 research outputs found

    Infrared Behaviour of Propagators and Vertices

    Get PDF
    We elucidate constraints imposed by confinement and dynamical chiral symmetry breaking on the infrared behaviour of the dressed-quark and -gluon propagators, and dressed-quark-gluon vertex. In covariant gauges the dressing of the gluon propagator is completely specified by P(k^2):= 1/[1+Pi(k^2)], where Pi(k^2) is the vacuum polarisation. In the absence of particle-like singularities in the dressed-quark-gluon vertex, extant proposals for the dressed-gluon propagator that manifest P(k^2=0)=0 and Max[P(k^2)]~10 neither confine quarks nor break chiral symmetry dynamically. This class includes all existing estimates of P(k^2) via numerical simulations.Comment: 10 pages, 2 figure

    Investigating Endwall-Blade Fillet Radius Variation to Reduce Secondary Flow Losses

    Get PDF
    In turbomachinery the joint between a turbine blade and the endwall often involves a fillet. Previous studies show that this fillet significantly influences the secondary flows despite regularly being omitted from simulation and testing, specifically that a uniform fillet radius of 16% axial chord increased endwall losses by 10%. It was proposed that a variable radius fillet could reduce secondary flows and the associated endwall losses. This paper describes a computational study to determine what variable radius fillet is required for optimal performance in the cascade. The variable radius fillet ranges from 0.5% to 16% of axial chord and was found using a genetic algorithm optimisation. Although this is a computational study the design offers physically plausible mechanisms by which the extra losses introduced by fillets may be reduced. This paper also suggests a generalised rule of fillet radius variation to minimise endwall losses. A large radius is required on the leading edge that reduces slowly along the pressure side but rapidly on the suction side such that the smallest permitted radius is applied to the suction side. A medium radius is required at the trailing edge

    Tests of prototype PCM 'sails' for office cooling

    Get PDF
    This is the post-print version of the final paper published in Applied Thermal Engineering. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.PCM modules, constructed from a paraffin/LDPE composite, were tested in an occupied London office, in summer. Design variations tested the effect on heat transfer of a black paint or aluminium surface, the effect of different phase transition zones and the effect of discharging heat inside or outside. The modules’ temperatures were monitored along with airflow rate, air temperature and globe temperature. Their small size meant any effect on room temperature was negligible. Using DSC measurements of the PCMs’ thermophysical properties, in conjunction with the environmental measurements, a semi-empirical model of the modules was constructed in FLUENT using an enthalpy-porosity formulation to model phase change. Good validation was obtained for all modules using the temperature measurements with notable divergence when maximum liquid fraction was reached. The model was validated by the temperature measurements and used to generate mean liquid fraction and surface heat transfer rate profiles for performance comparisons. The broad phase transition zones of the PCMs results in wasted latent heat capacity. Black modules transfer heat and exhaust latent storage capacity significantly quicker than aluminium modules, due to radiant exchange. Discharging heat outside leads to an increase in thermal storage capacity and a higher rate of heat absorption.Buro Happold Engineers and the EPSRC

    Geochemically defined space-for-time transects successfully capture microbial dynamics along lacustrine chronosequences in a polar desert

    Get PDF
    The space-for-time substitution approach provides a valuable empirical assessment to infer temporal effects of disturbance from spatial gradients. Applied to predict the response of different ecosystems under current climate change scenarios, it remains poorly tested in microbial ecology studies, partly due to the trophic complexity of the ecosystems typically studied. The McMurdo Dry Valleys (MDV) of Antarctica represent a trophically simple polar desert projected to experience drastic changes in water availability under current climate change scenarios. We used this ideal model system to develop and validate a microbial space-for-time sampling approach, using the variation of geochemical profiles that follow alterations in water availability and reflect past changes in the system. Our framework measured soil electrical conductivity, pH, and water activity in situ to geochemically define 17 space-for-time transects from the shores of four dynamic and two static Dry Valley lakes. We identified microbial taxa that are consistently responsive to changes in wetness in the soils and reliably associated with long-term dry or wet edaphic conditions. Comparisons between transects defined at static (open-basin) and dynamic (closed-basin) lakes highlighted the capacity for geochemically defined space-for-time gradients to identify lasting deterministic impacts of historical changes in water presence on the structure and diversity of extant microbial communities. We highlight the potential for geochemically defined space-for-time transects to resolve legacy impacts of environmental change when used in conjunction with static and dynamic scenarios, and to inform future environmental scenarios through changes in the microbial community structure, composition, and diversity

    Pseudovector components of the pion, pi^0 -> gamma gamma, and F_pi(q^2)

    Full text link
    As a consequence of dynamical chiral symmetry breaking the pion Bethe-Salpeter amplitude necessarily contains terms proportional to gamma_5 gamma.P and gamma_5 gamma.k, where k is the relative and P the total momentum of the constituents. These terms are essential for the preservation of low energy theorems, such as the Gell-Mann--Oakes-Renner relation and those describing anomalous decays of the pion, and to obtaining an electromagnetic pion form factor that falls as 1/q^2 for large q^2, up to calculable ln(q^2)-corrections. In a simple model, which correlates low- and high-energy pion observables, we find q^2 F_pi(q^2) ~ 0.12 - 0.19 GeV^2 for q^2 >~10 GeV^2.Comment: 15 pages, 2 figures, REVTE

    Dynamical chiral symmetry breaking and confinement with an infrared-vanishing gluon propagator?

    Full text link
    We study a model Dyson-Schwinger equation for the quark propagator closed using an {\it Ansatz} for the gluon propagator of the form \mbox{D(q)∌q2/[(q2)2+b4]D(q) \sim q^2/[(q^2)^2 + b^4]} and two {\it Ans\"{a}tze} for the quark-gluon vertex: the minimal Ball-Chiu and the modified form suggested by Curtis and Pennington. Using the quark condensate as an order parameter, we find that there is a critical value of b=bcb=b_c such that the model does not support dynamical chiral symmetry breaking for b>bcb>b_c. We discuss and apply a confinement test which suggests that, for all values of bb, the quark propagator in the model {\bf is not} confining. Together these results suggest that this Ansatz for the gluon propagator is inadequate as a model since it does not yield the expected behaviour of QCD.Comment: 21 Pages including 4 PostScript figures uuencoded at the end of the file. Replacement: slight changes of wording and emphasis. ADP-93-215/T133, ANL-PHY-7599-TH-93, FSU-SCRI-93-108, REVTEX 3.

    Dyson-Schwinger Equations and the Application to Hadronic Physics

    Full text link
    We review the current status of nonperturbative studies of gauge field theory using the Dyson-Schwinger equation formalism and its application to hadronic physics. We begin with an introduction to the formalism and a discussion of renormalisation in this approach. We then review the current status of studies of Abelian gauge theories [e.g., strong coupling quantum electrodynamics] before turning our attention to the non-Abelian gauge theory of the strong interaction, quantum chromodynamics. We discuss confinement, dynamical chiral symmetry breaking and the application and contribution of these techniques to our understanding of the strong interactions.Comment: 110 pages, LaTeX. Replaced only to facilitate retrieval. Also available at /u/ftp/pub/Review.uu via anonymnous-ft

    pi-pi scattering in a QCD based model field theory

    Full text link
    A model field theory, in which the interaction between quarks is mediated by dressed vector boson exchange, is used to analyse the pionic sector of QCD. It is shown that this model, which incorporates dynamical chiral symmetry breaking, asymptotic freedom and quark confinement, allows one to calculate fπf_\pi, mπm_\pi, rπr_\pi and the partial wave amplitudes in π\pi-π\pi scattering and obtain good agreement with the experimental data, with the latter being well described up to energies \mbox{E≃700E\simeq 700 MeV}.Comment: 23 Pages, 4 figures in PostScript format, PHY-7512-TH-93, REVTEX Available via anonymous ftp in /pub: login anonymou get pipi93.tex Fig1.ps Fig2.ps Fig3.ps Fig4.p

    Renormalization and Chiral Symmetry Breaking in Quenched QED in Arbitrary Covariant Gauge

    Get PDF
    We extend a previous Landau-gauge study of subtractive renormalization of the fermion propagator Dyson-Schwinger equation (DSE) in strong-coupling, quenched QED_4 to arbitrary covariant gauges. We use the fermion-photon proper vertex proposed by Curtis and Pennington with an additional correction term included to compensate for the small gauge-dependence induced by the ultraviolet regulator. We discuss the chiral limit and the onset of dynamical chiral symmetry breaking in the presence of nonperturbative renormalization. We extract the critical coupling in several different gauges and find evidence of a small residual gauge-dependence in this quantity.Comment: REVTEX 3.0, 27 pages including 14 Extended Postscript files comprising 9 figures. Replacement: discussion of chiral limit corrected, and some minor typographical errors fixed. To appear in Phys. Rev.

    Antarctic ecosystems in transition – life between stresses and opportunities

    Get PDF
    Important findings from the second decade of the 21st century on the impact of environmental change on biological processes in the Antarctic were synthesised by 26 international experts. Ten key messages emerged that have stakeholder-relevance and/or a high impact for the scientific community. They address (i) altered biogeochemical cycles, (ii) ocean acidification, (iii) climate change hotspots, (iv) unexpected dynamism in seabed-dwelling populations, (v) spatial range shifts, (vi) adaptation and thermal resilience, (vii) sea ice related biological fluctuations, (viii) pollution, (ix) endangered terrestrial endemism and (x) the discovery of unknown habitats. Most Antarctic biotas are exposed to multiple stresses and considered vulnerable to environmental change due to narrow tolerance ranges, rapid change, projected circumpolar impacts, low potential for timely genetic adaptation, and migration barriers. Important ecosystem functions, such as primary production and energy transfer between trophic levels, have already changed, and biodiversity patterns have shifted. A confidence assessment of the degree of 'scientific understanding' revealed an intermediate level for most of the more detailed sub-messages, indicating that process-oriented research has been successful in the past decade. Additional efforts are necessary, however, to achieve the level of robustness in scientific knowledge that is required to inform protection measures of the unique Antarctic terrestrial and marine ecosystems, and their contributions to global biodiversity and ecosystem services
    • 

    corecore