1,973 research outputs found

    Identification of an osteocalcin isoform in fish with a large acidic prodomain

    Get PDF
    Osteocalcin is a small, secreted bone protein whose gene consists of four exons. In the course of analyzing the structure of fish osteocalcin genes, we recently found that the spotted green pufferfish has two possible exon 2 structures, one of 15 bp and the other of 324 bp. Subsequent analysis of the pufferfish cDNA showed that only the transcript with a large exon 2 exists. Exon 2 codes for the osteocalcin propeptide, and exon 2 of pufferfish osteocalcin is ∼3.4-fold larger than exon 2 previously found in other vertebrate species. We have termed this new pufferfish osteocalcin isoform OC2. Additional studies showed that the OC2 isoform is restricted to a unique fish taxonomic group, the Osteichthyes; OC2 is the only osteocalcin isoform found so far in six Osteichthyes species, whereas both OC1 and OC2 isoforms coexist in zebrafish and rainbow trout. The larger size of the OC2 propeptide is due to an acidic region that is likely to be highly phosphorylated and has no counterpart in the OC1 propeptide. We propose 1) that OC1 and OC2 are encoded by distinct genes that originated from a duplication event that probably occurred in the teleost fish lineage soon after divergence from tetrapods and 2) that the novel OC2 propeptide could be, if secreted, a phosphoprotein that participates in the regulation of biomineralization through its large acidic and phosphorylated propeptide

    Electromechanical Coupling between Skeletal and Cardiac Muscle: Implications for Infarct Repair

    Get PDF
    Skeletal myoblasts form grafts of mature muscle in injured hearts, and these grafts contract when exogenously stimulated. It is not known, however, whether cardiac muscle can form electromechanical junctions with skeletal muscle and induce its synchronous contraction. Here, we report that undifferentiated rat skeletal myoblasts expressed N-cadherin and connexin43, major adhesion and gap junction proteins of the intercalated disk, yet both proteins were markedly downregulated after differentiation into myo-tubes. Similarly, differentiated skeletal muscle grafts in injured hearts had no detectable N-cadherin or connexin43; hence, electromechanical coupling did not occur after in vivo grafting. In contrast, when neonatal or adult cardiomyocytes were cocultured with skeletal muscle, ∼10% of the skeletal myotubes contracted in synchrony with adjacent cardiomyocytes. Isoproterenol increased myotube contraction rates by 25% in coculture without affecting myotubes in monoculture, indicating the cardiomyocytes were the pacemakers. The gap junction inhibitor heptanol aborted myotube contractions but left spontaneous contractions of individual cardiomyocytes intact, suggesting myotubes were activated via gap junctions. Confocal microscopy revealed the expression of cadherin and connexin43 at junctions between myotubes and neonatal or adult cardiomyocytes in vitro. After microinjection, myotubes transferred dye to neonatal cardiomyocytes via gap junctions. Calcium imaging revealed synchronous calcium transients in cardiomyocytes and myotubes. Thus, cardiomyocytes can form electromechanical junctions with some skeletal myotubes in coculture and induce their synchronous contraction via gap junctions. Although the mechanism remains to be determined, if similar junctions could be induced in vivo, they might be sufficient to make skeletal muscle grafts beat synchronously with host myocardium

    Calcium regulates the PI3K-Akt pathway in stretched osteoblasts

    Get PDF
    AbstractMechanical loading plays a vital role in maintaining bone architecture. The process by which osteoblasts convert mechanical signals into biochemical responses leading to bone remodeling is not fully understood. The earliest cellular response detected in mechanically stimulated osteoblasts is an increase in intracellular calcium concentration ([Ca2+]i). In this study, we used the clonal mouse osteoblast cell line MC3T3-E1 to show that uniaxial cyclic stretch induces: (1) an immediate increase in [Ca2+]i, and (2) the phosphorylation of critical osteoblast proteins that are implicated in cell proliferation, gene regulation, and cell survival. Our data suggest that cyclic stretch activates the phosphoinositide 3-kinase (PI3K) pathway including: PI3K, Akt, FKHR, and AFX. Moreover, cyclic stretch also causes the phosphorylation of stress-activated protein kinase/c-Jun N-terminal kinase. Attenuation in the level of phosphorylation of these proteins was observed by stretching cells in Ca2+-free medium, using intra- (BAPTA-AM) and extracellular (BAPTA) calcium chelators, or gadolinium, suggesting that influx of extracellular calcium plays a significant role in the early response of osteoblasts to mechanical stimuli

    Identification of a Potential Ovarian Cancer Stem Cell Gene Expression Profile from Advanced Stage Papillary Serous Ovarian Cancer

    Get PDF
    Identification of gene expression profiles of cancer stem cells may have significant implications in the understanding of tumor biology and for the design of novel treatments targeted toward these cells. Here we report a potential ovarian cancer stem cell gene expression profile from isolated side population of fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma. Affymetrix U133 Plus 2.0 microarrays were used to interrogate the differentially expressed genes between side population (SP) and main population (MP), and the results were analyzed by paired T-test using BRB-ArrayTools. We identified 138 up-regulated and 302 down-regulated genes that were differentially expressed between all 10 SP/MP pairs. Microarray data was validated using qRT-PCR and17/19 (89.5%) genes showed robust correlations between microarray and qRT-PCR expression data. The Pathway Studio analysis identified several genes involved in cell survival, differentiation, proliferation, and apoptosis which are unique to SP cells and a mechanism for the activation of Notch signaling is identified. To validate these findings, we have identified and isolated SP cells enriched for cancer stem cells from human ovarian cancer cell lines. The SP populations were having a higher colony forming efficiency in comparison to its MP counterpart and also capable of sustained expansion and differentiation in to SP and MP phenotypes. 50,000 SP cells produced tumor in nude mice whereas the same number of MP cells failed to give any tumor at 8 weeks after injection. The SP cells demonstrated a dose dependent sensitivity to specific γ-secretase inhibitors implicating the role of Notch signaling pathway in SP cell survival. Further the generated SP gene list was found to be enriched in recurrent ovarian cancer tumors

    Accumulation of muscle ankyrin repeat protein transcript reveals local activation of primary myotube endcompartments during muscle morphogenesis

    Get PDF
    The characteristic shapes and positions of each individual body muscle are established during the process of muscle morphogenesis in response to patterning information from the surrounding mesenchyme. Throughout muscle morphogenesis, primary myotubes are arranged in small parallel bundles, each myotube spanning the forming muscles from end to end. This unique arrangement potentially assigns a crucial role to primary myotube end regions for muscle morphogenesis. We have cloned muscle ankyrin repeat protein (MARP) as a gene induced in adult rat skeletal muscle by denervation. MARP is the rodent homologue of human C-193 (Chu, W., D.K. Burns, R.A. Swerick, and D.H. Presky. 1995. J. Biol. Chem. 270:10236-10245) and is identical to rat cardiac ankyrin repeat protein. (Zou, Y., S. Evans, J. Chen, H.-C. Kuo, R.P. Harvey, and K.R. Chien. 1997. Development. 124:793-804). In denervated muscle fibers, MARP transcript accumulated in a unique perisynaptic pattern. MARP was also expressed in large blood vessels and in cardiac muscle, where it was further induced by cardiac hypertrophy. During embryonic development, MARP was expressed in forming skeletal muscle. In situ hybridization analysis in mouse embryos revealed that MARP transcript exclusively accumulates at the end regions of primary myotubes during muscle morphogenesis. This closely coincided with the expression of thrombospondin-4 in adjacent prospective tendon mesenchyme, suggesting that these two compartments may constitute a functional unit involved in muscle morphogenesis. Transfection experiments established that MARP protein accumulates in the nucleus and that the levels of both MARP mRNA and protein are controlled by rapid degradation mechanisms characteristic of regulatory early response genes. The results establish the existence of novel regulatory muscle fiber subcompartments associated with muscle morphogenesis and denervation and suggest that MARP may be a crucial nuclear cofactor in local signaling pathways from prospective tendon mesenchyme to forming muscle and from activated muscle interstitial cells to denervated muscle fibers

    Effects of interleukin-1 β and tumor necrosis factor-α on osteoblastic expression of osteocalcin and mineralized extracellular matrix in vitro

    Full text link
    Osteoblasts play a pivotal role during the bioresponse of bone to agents that stimulate bone resorption and/or inhibit bone formation including hormones, polypeptide growth factors, and cytokines. We examined the cytokines interleukin-1-beta (IL-1 β ) and tumor necrosis factor-alpha (TNF- α ) for their effects on osteoblastic proliferation and development and expression of alkaline phosphatase and the osteoblast-specific protein osteocalcin in a mineralizing environment. Primary rat osteoblast-like cells (ROB) and osteoblastic cell lines derived from rat (ROS 17/2.8) and human (MG-63) osteosarcomas were studied. IL-1 β and TNF- α were chosen because of their critical importance during the host response to local inflammatory stimuli. Qualitatively similar two- to threefold inhibition of osteocalcin synthesis by IL-1β and TNF- α were observed in all three postconfluent bone-forming model systems. Because of the readily measurable concentrations of osteocalcin produced in our culture protocol, it was not necessary to enhance osteoblastic synthesis of osteocalcin by supplementation with 1,25(OH) 2 -vitamin D 3 , a treatment which exerts pleiotropic effects on osteoblasts. Under the constraints of our protocol, where alkaline phosphatase and mineralization were already elevated at the 14-day onset of treatment, neither of these phenotypic properties was sensitive to a three-day cytokine exposure. Differences were noted in proliferation, where only TNF- α stimulated DNA synthesis in ROB cells, while both cytokines stimulated MG-63 cells. IL-1 β and TNF- α failed to alter ROS 17/2.8 DNA synthesis except at the highest doses (25 pM IL-1β and l nM TNF- α ) where inhibition was observed. These results further support the view that cytokine-mediated osteoblastic regulation can be relatively selective.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44508/1/10753_2004_Article_BF00919342.pd

    Physische und psychische Gesundheit in deutschen Betrieben

    Full text link
    Die Forschungsstudie "Arbeitsqualität und wirtschaftlicher Erfolg" zielt darauf, mögliche Zusammenhänge zwischen der Arbeitsqualität der Beschäftigten und dem wirtschaftlichen Erfolg von Betrieben zu untersuchen. Sie wird vom Bundesministerium für Arbeit und Soziales (BMAS) und vom Institut für Arbeitsmarkt- und Berufsforschung (IAB) getragen und vom IAB, vom Seminar für Allgemeine Betriebswirtschaftslehre und Personalwirtschaftslehre der Universität zu Köln, dem Lehrstuhl für Managerial Accounting der Eberhard-Karls-Universität Tübingen durchgeführt. Es handelt sich um eine Längsschnittstudie, in der in vier Befragungswellen seit 2012 jeweils eine Betriebs- und eine Beschäftigtenbefragung durchgeführt wurde. Vor dem Hintergrund der Corona-Pandemie ist die Gesundheit der Beschäftigten, neben der körperlichen verstärkt auch die psychische Gesundheit, stärker in den Blick der Öffentlichkeit gerückt. Im Bericht "Physische und Psychische Gesundheit in deutschen Betrieben" werden die Veränderungen zwischen 2013 und 2021 aus der Beschäftigtenperspektive betrachtet, die individuelle, berufliche und betriebliche Rahmenbedingungen und deren Einfluss auf subjektive und objektive Dimensionen von Gesundheit untersuchen
    • …
    corecore