385 research outputs found

    A modeling-based evaluation of isothermal rebreathing for breath gas analyses of highly soluble volatile organic compounds

    Full text link
    Isothermal rebreathing has been proposed as an experimental technique for estimating the alveolar levels of hydrophilic volatile organic compounds (VOCs) in exhaled breath. Using the prototypic test compound acetone we demonstrate that the end-tidal breath profiles of such substances during isothermal rebreathing show characteristics that contradict the conventional pulmonary inert gas elimination theory due to Farhi. On the other hand, these profiles can reliably be captured by virtue of a previously developed mathematical model for the general exhalation kinetics of highly soluble, blood-borne VOCs, which explicitly takes into account airway gas exchange as major determinant of the observable breath output. This model allows for a mechanistic analysis of various rebreathing protocols suggested in the literature. In particular, it clarifies the discrepancies between in vitro and in vivo blood-breath ratios of hydrophilic VOCs and yields further quantitative insights into the physiological components of isothermal rebreathing.Comment: 21 page

    Physiological modeling of isoprene dynamics in exhaled breath

    Full text link
    Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far to a sound analysis of the quantitative relationships between breath levels and the underlying systemic concentrations. This paper is devoted to a thorough modeling study of the end-tidal breath dynamics associated with isoprene, which serves as a paradigmatic example for the class of low-soluble, blood-borne VOCs. Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes of isoprene output in response to variations in ventilation and perfusion. Here, a valid compartmental description of these profiles is developed. By comparison with experimental data it is inferred that the major part of breath isoprene variability during exercise conditions can be attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue source of isoprene are presented. Our model is a first step towards new guidelines for the breath gas analysis of isoprene and is expected to aid further investigations regarding the exhalation, storage, transport and biotransformation processes associated with this important compound.Comment: 14 page

    Do Gamma-Ray Burst Sources Repeat?

    Get PDF
    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb 1993; Wang and Lingenfelter 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al. 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the observed bursts cannot be excluded.Comment: ApJ Letters, in press, 13 pages, including three embedded figures. uuencoded Unix-compressed PostScrip

    V2494 cyg: A unique FU ori type object in the cygnus OB7 complex

    Get PDF
    A photometric and spectral study of the variable star V2494 Cyg in the L 1003 dark cloud is presented. The brightness of the star, formerly known as HH 381 IRS, increased by 2.5 mag in R (probably in the 1980s) and since then has remained nearly constant. Since the brightness increase, V2494 Cyg has illuminated a bipolar cometary nebula. The stellar spectrum has several features typical of the FU Ori (FUor) type, plus it exhibits very strong Ha and forbidden emissionlines with high-velocity components. These emission lines originate in the Herbig-Haro (HH) jet near the star. The kinematic age of the jet is consistent with it forming at the time of the outburst leading to the luminosity increase. V2494 Cyg also produces a rather extended outflow; it is the first known FUor with both an observed outburst and a parsec-sized HH flow. The nebula, illuminated by V2494 Cyg, possesses similar morphological and spectral characteristics to Hubble's variable nebula (R Monocerotis/NGC 2261). © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

    Testing the Dipole and Quadrupole Moments of Galactic Models

    Get PDF
    If gamma-ray bursts originate in the Galaxy, at some level there should be a galactic pattern in their distribution on the sky. We test published galactic models by comparing their dipole and quadrupole moments with the moments of the BATSE 3B catalog. While many models have moments that are too large, several models are in acceptable or good agreement with the data.Comment: 5 pages, LaTex using Revtex macro aipbook.sty and psfig. To appear in the Proceedings of the 3rd Huntsville Symposium on Gamma-Ray Bursts, AIP, eds. C. Kouveliotou, M. S. Briggs, G. J. Fishma

    Physiological modeling of isoprene dynamics in exhaled breath

    Full text link
    Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far to a sound analysis of the quantitative relationships between breath levels and the underlying systemic concentrations. This paper is devoted to a thorough modeling study of the end-tidal breath dynamics associated with isoprene, which serves as a paradigmatic example for the class of low-soluble, blood-borne VOCs. Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes of isoprene output in response to variations in ventilation and perfusion. Here, a valid compartmental description of these profiles is developed. By comparison with experimental data it is inferred that the major part of breath isoprene variability during exercise conditions can be attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue source of isoprene are presented. Our model is a first step towards new guidelines for the breath gas analysis of isoprene and is expected to aid further investigations regarding the exhalation, storage, transport and biotransformation processes associated with this important compound.Comment: 14 page

    The Local Environment of the FUor-like Objects AR 6A and 6B

    Full text link
    We present new 12CO J=3-2 and HCN J=3-2 molecular line maps of the region surrounding the young star AR 6 using the 15 metre James Clerk Maxwell Telescope. AR 6 was previously found to be a double source with both components exhibiting several characteristics of FU Orionis (FUor) eruptive variable stars. Our data indicates that AR 6, like FU Orionis itself, does not possess a CO outflow and likewise, does not show evidence for large amounts of molecular g as in its circumstellar environment. We conclude that from the near-IR to the sub-mm, AR 6 is similar to FU Orionis in several respects. We interpret the lack of significant dust and molecular gas in the circumstellar environment of AR 6, together with the large near-IR thermal excess, as evidence that the sources have exhausted their natal envelopes, that they have at least small hot circumstellar disks, and that they are more evolved than Class I protostars. This, in itself, suggests that, since FUor eruptions have also been observed in stars with large dust mass envelopes (e.g. V346 Nor) and with CO outflows (e.g. L1551 IRS5), FUor events probably occur at many different stages in the early, formative phase of a star's life, and lends support to the idea that FUor outbursts are repetitive like their shorter-lived relatives occurring in EXor eruptive variables. Finally, we show that, being part of the 'Spokes' young stellar cluster, AR 6 is unlike many FUors which typically are located in more sparsely populated regions.Comment: Accepted for publication in The Astronomical Journal (October 2008

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page

    The Random Quadratic Assignment Problem

    Full text link
    Optimal assignment of classes to classrooms \cite{dickey}, design of DNA microarrays \cite{carvalho}, cross species gene analysis \cite{kolar}, creation of hospital layouts cite{elshafei}, and assignment of components to locations on circuit boards \cite{steinberg} are a few of the many problems which have been formulated as a quadratic assignment problem (QAP). Originally formulated in 1957, the QAP is one of the most difficult of all combinatorial optimization problems. Here, we use statistical mechanical methods to study the asymptotic behavior of problems in which the entries of at least one of the two matrices that specify the problem are chosen from a random distribution PP. Surprisingly, this case has not been studied before using statistical methods despite the fact that the QAP was first proposed over 50 years ago \cite{Koopmans}. We find simple forms for CminC_{\rm min} and CmaxC_{\rm max}, the costs of the minimal and maximum solutions respectively. Notable features of our results are the symmetry of the results for CminC_{\rm min} and CmaxC_{\rm max} and the dependence on PP only through its mean and standard deviation, independent of the details of PP. After the asymptotic cost is determined for a given QAP problem, one can straightforwardly calculate the asymptotic cost of a QAP problem specified with a different random distribution PP

    Structure and Composition of Isolated Core-Shell(In,Ga)N/GaNRods Based on Nanofocus X-Ray Diffraction and Scanning Transmission Electron Microscopy

    Get PDF
    Nanofocus x-ray diffraction is used to investigate the structure and local strain field of an isolated ðIn; GaÞN=GaN core-shell microrod. Because the high spatial resolution of the x-ray beam is only 80 × 90 nm2, we are able to investigate several distinct volumes on one individual side facet. Here, we find a drastic increase in thickness of the outer GaN shell along the rod height. Additionally, we performed highangle annular dark-field scanning-transmission-electron-microscopy measurements on several rods from the same sample showing that (In,Ga)N double-quantum-well and GaN barrier thicknesses also increase strongly along the height. Moreover, plastic relaxation is observed in the top part of the rod. Based on the experimentally obtained structural parameters, we simulate the strain-induced deformation using the finiteelement method, which serves as the input for subsequent kinematic scattering simulations. The simulations reveal a significant increase of elastic in-plane relaxation along the rod height. However, at a certain height, the occurrence of plastic relaxation yields a decrease of the elastic strain. Because of the experimentally obtained structural input for the finite-element simulations, we can exclude unknown structural influences on the strain distribution, and we are able to translate the elastic relaxation into an indium concentration which increases by a factor of 4 from the bottom to the height where plastic relaxation occurs
    corecore