1,954 research outputs found
Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational grids
During the last two years the RealityGrid project has allowed us to be one of
the few scientific groups involved in the development of computational grids.
Since smoothly working production grids are not yet available, we have been
able to substantially influence the direction of software development and grid
deployment within the project. In this paper we review our results from large
scale three-dimensional lattice Boltzmann simulations performed over the last
two years. We describe how the proactive use of computational steering and
advanced job migration and visualization techniques enabled us to do our
scientific work more efficiently. The projects reported on in this paper are
studies of complex fluid flows under shear or in porous media, as well as
large-scale parameter searches, and studies of the self-organisation of liquid
cubic mesophases.
Movies are available at
http://www.ica1.uni-stuttgart.de/~jens/pub/05/05-PhilTransReview.htmlComment: 18 pages, 9 figures, 4 movies available, accepted for publication in
Phil. Trans. R. Soc. London Series
Emergence of rheological properties in lattice Boltzmann simulations of gyroid mesophases
We use a lattice Boltzmann (LB) kinetic scheme for modelling amphiphilic
fluids that correctly predicts rheological effects in flow. No macroscopic
parameters are included in the model. Instead, three-dimensional hydrodynamic
and rheological effects are emergent from the underlying particulate
conservation laws and interactions. We report evidence of shear thinning and
viscoelastic flow for a self-assembled gyroid mesophase. This purely kinetic
approach is of general importance for the modelling and simulation of complex
fluid flows in situations when rheological properties cannot be predicted {\em
a priori}.Comment: 7 pages, 5 figure
Slip flow over structured surfaces with entrapped microbubbles
On hydrophobic surfaces, roughness may lead to a transition to a
superhydrophobic state, where gas bubbles at the surface can have a strong
impact on a detected slip. We present two-phase lattice Boltzmann simulations
of a Couette flow over structured surfaces with attached gas bubbles. Even
though the bubbles add slippery surfaces to the channel, they can cause
negative slip to appear due to the increased roughness. The simulation method
used allows the bubbles to deform due to viscous stresses. We find a decrease
of the detected slip with increasing shear rate which is in contrast to some
recent experimental results implicating that bubble deformation cannot account
for these experiments. Possible applications of bubble surfaces in microfluidic
devices are discussed.Comment: 4 pages, 4 figures. v2: revised version, to appear in Phys. Rev. Let
Order-disorder transition in nanoscopic semiconductor quantum rings
Using the path integral Monte Carlo technique we show that semiconductor
quantum rings with up to six electrons exhibit a temperature, ring diameter,
and particle number dependent transition between spin ordered and disordered
Wigner crystals. Due to the small number of particles the transition extends
over a broad temperature range and is clearly identifiable from the electron
pair correlation functions.Comment: 4 pages, 5 figures, For recent information on physics of small
systems see http://www.smallsystems.d
Simulations of slip flow on nanobubble-laden surfaces
On microstructured hydrophobic surfaces, geometrical patterns may lead to the
appearance of a superhydrophobic state, where gas bubbles at the surface can
have a strong impact on the fluid flow along such surfaces. In particular, they
can strongly influence a detected slip at the surface. We present two-phase
lattice Boltzmann simulations of a flow over structured surfaces with attached
gas bubbles and demonstrate how the detected slip depends on the pattern
geometry, the bulk pressure, or the shear rate. Since a large slip leads to
reduced friction, our results allow to assist in the optimization of
microchannel flows for large throughput.Comment: 22 pages, 12 figure
Emulsification in binary liquids containing colloidal particles: a structure-factor analysis
We present a quantitative confocal-microscopy study of the transient and
final microstructure of particle-stabilised emulsions formed via demixing in a
binary liquid. To this end, we have developed an image-analysis method that
relies on structure factors obtained from discrete Fourier transforms of
individual frames in confocal image sequences. Radially averaging the squared
modulus of these Fourier transforms before peak fitting allows extraction of
dominant length scales over the entire temperature range of the quench. Our
procedure even yields information just after droplet nucleation, when the
(fluorescence) contrast between the two separating phases is scarcely
discernable in the images. We find that our emulsions are stabilised on
experimental time scales by interfacial particles and that they are likely to
have bimodal droplet-size distributions. We attribute the latter to coalescence
together with creaming being the main coarsening mechanism during the late
stages of emulsification and we support this claim with (direct)
confocal-microscopy observations. In addition, our results imply that the
observed droplets emerge from particle-promoted nucleation, possibly followed
by a free-growth regime. Finally, we argue that creaming strongly affects
droplet growth during the early stages of emulsification. Future investigations
could clarify the link between quench conditions and resulting microstructure,
paving the way for tailor-made particle-stabilised emulsions from binary
liquids.Comment: http://iopscience.iop.org/0953-8984/22/45/455102
A simplified particulate model for coarse-grained hemodynamics simulations
Human blood flow is a multi-scale problem: in first approximation, blood is a
dense suspension of plasma and deformable red cells. Physiological vessel
diameters range from about one to thousands of cell radii. Current
computational models either involve a homogeneous fluid and cannot track
particulate effects or describe a relatively small number of cells with high
resolution, but are incapable to reach relevant time and length scales. Our
approach is to simplify much further than existing particulate models. We
combine well established methods from other areas of physics in order to find
the essential ingredients for a minimalist description that still recovers
hemorheology. These ingredients are a lattice Boltzmann method describing rigid
particle suspensions to account for hydrodynamic long range interactions
and---in order to describe the more complex short-range behavior of
cells---anisotropic model potentials known from molecular dynamics simulations.
Paying detailedness, we achieve an efficient and scalable implementation which
is crucial for our ultimate goal: establishing a link between the collective
behavior of millions of cells and the macroscopic properties of blood in
realistic flow situations. In this paper we present our model and demonstrate
its applicability to conditions typical for the microvasculature.Comment: 12 pages, 11 figure
A Stability Diagram for Dense Suspensions of Model Colloidal Al2O3-Particles in Shear Flow
In Al2O3 suspensions, depending on the experimental conditions very different
microstructures can be found, comprising fluid like suspensions, a repulsive
structure, and a clustered microstructure. For technical processing in
ceramics, the knowledge of the microstructure is of importance, since it
essentially determines the stability of a workpiece to be produced. To
enlighten this topic, we investigate these suspensions under shear by means of
simulations. We observe cluster formation on two different length scales: the
distance of nearest neighbors and on the length scale of the system size. We
find that the clustering behavior does not depend on the length scale of
observation. If inter-particle interactions are not attractive the particles
form layers in the shear flow. The results are summarized in a stability
diagram.Comment: 15 pages, 10 figures, revised versio
Solubility isotope effects in aqueous solutions of methane
The isotope effect on the Henry's law coefficients of methane in
aqueous solution (H/D and C-12/C-13 substitution) are interpreted using
the statistical mechanical theory of condensed phase isotope effects.
The missing spectroscopic data needed for the implementation of the
theory were obtained either experimentally (infrared measurements), by
computer simulation (molecular dynamics technique), or estimated using
the Wilson's GF matrix method. The order of magnitude and sign of both
solute isotope effects can be predicted by the theory. Even a crude
estimation based on data from previous vapor pressure isotope effect
studies of pure methane at low temperature can explain the inverse
effect found for the solubility of deuterated methane in water. (C)
2002 American Institute of Physics
3D simulations of gas puff effects on edge plasma and ICRF coupling in JET
Recent JET (ITER-Like Wall) experiments have shown that the fueling gas puffed from different locations of the vessel can result in different scrape-off layer (SOL) density profiles and therefore different radio frequency (RF) coupling. To reproduce the experimental observations, to understand the associated physics and to optimize the gas puff methods, we have carried out three-dimensional (3D) simulations with the EMC3-EIRENE code in JET-ILW including a realistic description of the vessel geometry and the gas injection modules (GIMs) configuration. Various gas puffing methods have been investigated, in which the location of gas fueling is the only variable parameter. The simulation results are in quantitative agreement with the experimental measurements. They confirm that compared to divertor gas fueling, mid-plane gas puffing increases the SOL density most significantly but locally, while top gas puffing increases it uniformly in toroidal direction but to a lower degree. Moreover, the present analysis corroborates the experimental findings that combined gas puff scenarios-based on distributed main chamber gas puffing-can be effective in increasing the RF coupling for multiple antennas simultaneously. The results indicate that the spreading of the gas, the local ionization and the transport of the ionized gas along the magnetic field lines connecting the local gas cloud in front of the GIMs to the antennas are responsible for the enhanced SOL density and thus the larger RF coupling
- …
