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During the last 2.5 years, the RealityGrid project has allowed us to be one of the few
scientific groups involved in the development of computational Grids. Since smoothly
working production Grids are not yet available, we have been able to substantially
influence the direction of software and Grid deployment within the project. In this paper,
we review our results from large-scale three-dimensional lattice Boltzmann simulations
performed over the last 2.5 years. We describe how the proactive use of computational
steering, and advanced job migration and visualization techniques enabled us to do our
scientific work more efficiently. The projects reported on in this paper are studies of
complex fluid flows under shear or in porous media, as well as large-scale parameter
searches, and studies of the self-organization of liquid cubic mesophases.

Keywords: lattice Boltzmann; complex fluids; Grid computing;
computational steering
On
1. Introduction

In recent years there has emerged a class of fluid dynamical problems, called
‘complex fluids’, which involve both hydrodynamic flow effects and complex
interactions between fluid particles. Computationally, such problems are too
large and expensive to tackle with atomistic methods such as molecular
dynamics, yet they require too much molecular detail for continuum Navier–
Stokes approaches.

Algorithms which work at an intermediate or ‘mesoscale’ level of description
in order to solve these problems have been developed in response, including
dissipative particle dynamics (Español & Warren 1995; Jury et al. 1999; Flekkøy
et al. 2000), lattice gas cellular automata (Rivet & Boon 2001), the stochastic
rotation dynamics of Malevanets & Kapral (Malevanets & Kapral 1998;
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Hashimoto et al. 2000; Sakai et al. 2000) and the lattice Boltzmann equation
(LBE; Benzi et al. 1992; Succi 2001; Love et al. 2003). In particular, the lattice
Boltzmann method has been found highly useful for simulation of complex fluid
flows in a wide variety of systems. This algorithm, described in more detail
below, is extremely well suited to implementation on parallel computers, which
permits very large systems to be simulated, reaching hitherto inaccessible
physical regimes. We describe some of these calculations, and also attempt to
take parallel computing to a new scale, by coupling several supercomputers
together into a computational Grid, which in turn permits easy use of techniques
such as computational steering, code migration and real-time visualization.

The term ‘simple fluid’ usually refers to a fluid which can be described to a
good degree of approximation by macroscopic quantities only, such as the
density field r(x), velocity field v(x) and perhaps temperature T(x). Such fluids
are governed by the well-known Navier–Stokes equations (Faber 1995), which,
being nonlinear, are difficult to solve in the most general case, with the result
that numerical solution of the equations has become a common tool for
understanding the behaviour of ‘simple’ fluids, such as water or air. Conversely, a
‘complex fluid’ is one whose macroscopic flow is affected by its microscopic
properties. A good example of such a fluid is blood: as it flows through vessels (of
order millimetres wide and centimetres long), it is subjected to shear forces,
which cause red blood cells (of order micrometres wide) to align with the flow, so
that they can slide over one another more easily, causing the fluid to become less
viscous; this change in viscosity in turn affects the flow profile. Hence, the
macroscopic blood flow is affected by the microscopic alignment of its constituent
cells. Other examples of complex fluids include biological fluids such as milk, cell
organelles and cytoplasm, as well as polymers and liquid crystals. In all of these
cases, the density and velocity fields are insufficient to describe the fluid
behaviour, and in order to understand this behaviour, it is necessary to treat
effects which occur over a very wide range of length and time-scales. This length
and time-scale gap makes complex fluids even more difficult to model than simple
fluids. While numerical solutions of the macroscopic equations are possible for
many simple fluids, such a level of description may not exist for complex fluids,
yet simulation of every single molecule involved is computationally infeasible.

In a mixture containing many different fluid components, an amphiphile is a
kind of molecule which is composed of two parts, each part being attracted
towards a different fluid component. For example, soap molecules are
amphiphiles, containing a head group which is attracted towards water, and a
tail which is attracted towards oil and grease; analogous molecules can also be
formed from polymers. If many amphiphile molecules are collected together in
solution, they can exhibit highly varied and complicated behaviour, often
assembling to form amphiphile mesophases, which are complex fluids of
significant theoretical and industrial importance. Some of these phases have
long-range order, yet remain able to flow, and are called liquid crystal
mesophases. Of particular interest to us are those with cubic symmetry, whose
properties have been studied experimentally (Seddon & Templer 1993; Seddon &
Templer 1995; Czeslik & Winter 2002) in lipid–water mixtures (Seddon &
Templer 1995), diblock copolymers (Shefelbine et al. 1999), and in many
biological systems (Landh 1995).
Phil. Trans. R. Soc. A (2005)
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Over the last decade, significant effort has been invested in understanding
complex fluids through computational mesoscale modelling techniques. These
techniques do not attempt to keep track of the state of every single constituent
element of a system, nor do they use an entirely macroscopic description; instead,
an intermediate, mesoscale model of the fluid is developed, coarse-graining
microscopic interactions enough that they are rendered amenable to simulation
and analysis, but not so much that the important details are lost. Such approaches
include lattice gas automata (Frisch et al. 1986; Rothman & Keller 1988; Rivet &
Boon 2001; Love 2002), LBE (McNamara & Zanetti 1988; Higuera & Jimènez
1989; Higuera et al. 1989; Benzi et al. 1992; Shan & Chen 1993; Lamura et al. 1999;
Chen et al. 2000; Succi 2001; Chin & Coveney 2002), dissipative particle dynamics
(Hoogerbrugge & Koelman 1992; Español &Warren 1995; Jury et al. 1999), or the
Malevanets–Kapral real-coded lattice gas (Malevanets & Kapral 1998; Hashimoto
et al. 2000; Malevanets & Yeomans 2000; Sakai et al. 2000). Recently developed
techniques (Garcia et al. 1999; Delgado-Buscalioni & Coveney 2003) which use
hybrid algorithms have shown much promise.

All simulations described in this paper use the lattice Boltzmann algorithm,
which is a powerful method for simulating fluid dynamics. This is due to the ease
with which boundary conditions can be imposed, and with which the model may
be extended to describe mixtures of interacting complex fluids. Rather than
tracking the state of individual atoms and molecules, the method describes the
dynamics of the single-particle distribution function of mesoscopic fluid packets.

In a continuum description, the single-particle distribution function f1(r, v, t)
represents the density of fluid particles with position r and velocity v at time t,
such that the density and velocity of the macroscopically observable fluid are
given by rðr; tÞZ

Ð
f1ðr; v; tÞdv and uðr; tÞZ

Ð
f1ðr; v; tÞv dv, respectively. In the

non-interacting, long mean free path limit, with no externally applied forces, the
evolution of this function is described by Boltzmann’s equation

ðvt Cv,VÞf1 ZUjf1j: ð1:1Þ

While the left-hand side describes changes in the distribution function due to free
particle motion, the right-hand side models pairwise collisions. This collision
operator U is an integral expression that is often simplified (Bhatnagar et al.
1954) to the linear Bhatnagar–Gross–Krook (BGK) form

Ujf jxK
1

t
½f K f ðeqÞ�: ð1:2Þ

The BGK collision operator describes the relaxation, at a rate controlled by a
characteristic time t, towards a Maxwell–Boltzmann equilibrium distribution
f (eq). While this is a drastic simplification, it can be shown that distributions
governed by the Boltzmann–BGK equation conserve mass, momentum and
energy (Succi 2001), and obey a non-equilibrium form of the second law of
thermodynamics (Liboff 1990). Moreover, it can be shown (Chapman & Cowling
1952; Liboff 1990) that the well-known Navier–Stokes equations for macroscopic
fluid flow are obeyed on coarse length and time-scales (Chapman & Cowling
1952; Liboff 1990). In a lattice Boltzmann formulation, the single-particle
distribution function is discretized in time and space. The positions r on which
f1(r, v, t) is defined are restricted to points ri on a lattice, and the velocities
Phil. Trans. R. Soc. A (2005)
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v are restricted to a set ci joining points on the lattice. The density of particles
at lattice site r, travelling with velocity ci, at time-step t is given by fi(r, t)Z
f(r, ci, t), while the fluid’s density and velocity are given by rðrÞZ

P
i fiðrÞ and

uðrÞZ
P

i fiðrÞci. The discretized description can be evolved in two steps: the
collision step, where particles at each lattice site are redistributed across the
velocity vectors, and the advection, where values of the post-collisional
distribution function are propagated to adjacent lattice sites.

By combining these steps, one obtains the LBE

fiðr; tC1ÞK fiðr; tÞZU½ f �ZK
1

t
½ fiðr; tÞKNiðr;uÞ�; ð1:3Þ

where NiZNi(r(r), u(r)) is a polynomial function of the local density and
velocity, which may be found by discretizing the well-known Maxwell–
Boltzmann equilibrium distribution. Our implementation uses the Shan–Chen
approach (Shan & Chen 1993), by incorporating an explicit forcing term in the
collision operator in order to model multicomponent interacting fluids. Shan and
Chen extended fi to the form f si , where each component is denoted by a different
value of the superscript s, so that density and momentum of a component s are
given by rsZ

P
i f

s
i and rsusZ

P
i f

s
i ci. The fluid viscosity ns is proportional to

(tsK1/2) and the particle mass is ms. This results in a lattice BGK equation
(1.3) of the form

f si ðr; tC1ÞK f si ðr; tÞZK
1

ts
f si KNiðr

s; vsÞ
� �

: ð1:4Þ

The velocity vs is found by calculating a weighted average velocity u 0 and then
adding a term to account for external forces

u 0 Z
X
s

rs

ts
us

 !� X
s

rs

ts

 !
; vs Zu 0 C

ts

rs
Fs: ð1:5Þ

In order to produce nearest-neighbour interactions between components, the
force term assumes the form

Fs ZKjsðxÞ
X
�s

gs �s
X
i

j
�sðxCciÞci; ð1:6Þ

where js(x)Zjs(rs(x)) is an effective charge for component s; gs �s is a coupling
constant controlling the strength of the interaction between two components s
and �s. If gs �s is set to zero for sZ �s, and a positive value for ss �s then, in the
interface between bulk regions of each component, particles experience a force in
the direction away from the interface, producing immiscibility. In two-
component systems, it is usually the case that gs �sZg �ssZgbr . Amongst other
things, this model has been used to simulate spinodal decomposition (Chin &
Coveney 2002; González-Segredo et al. 2003), polymer blends (Martys & Douglas
2001), liquid–gas phase transitions (Shan & Chen 1994) and flow in porous media
(Martys & Chen 1996). Amphiphilic fluids may be treated by introducing a new
species of particle with an orientational degree of freedom, which is modelled by a
vector dipole moment d (Chen et al. 2000) with magnitude d0. The dipole field
d(x, t) represents the average orientation of any amphiphile present at site x.
Phil. Trans. R. Soc. A (2005)
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During advection, values of d(x, t) are propagated according to (tildes denote
post-collision values)

rsðx; tC1Þdðx; tC1ÞZ
X
i

~f
s
i ðxKci; tÞ ~dðxKci; tÞ: ð1:7Þ

During collision, the dipole moments evolve in a BGK process controlled by a
dipole relaxation time td

~dðx; tÞZdðx; tÞK
1

td
½dðx; tÞKdðeqÞðx; tÞ�: ð1:8Þ

The equilibrium dipole moment d(eq)xbd0h/3 is aligned with the colour field h
which contains a component hc due to coloured particles, and a part hs due to
dipoles. With qs being a colour charge, such as C1 for red particles, K1 for blue
particles and 0 for amphiphile particles, one gets

hc Z
X
s

qs
X
i

rsðxCciÞci; ð1:9Þ

hsðx; tÞZ
X
i

X
js0

f si ðxCci; tÞqj,diðxCcj ; tÞC f si ðx; tÞdiðx; tÞ

" #
: ð1:10Þ

The second-rank tensor qj is defined in terms of the unit tensor I and lattice vector
cj as qjZIKDcj cj/c

2. In the presence of an amphiphilic species, the force on a
coloured particle includes an additional term F s,s to account for the colour field
due to the amphiphiles. By treating an amphiphilic particle as a pair of oil and
water particles with a very small separation d, introducing a constant gss to
control the strength of the interaction between amphiphiles and non-amphiphiles
and Taylor-expanding in d, it can be shown that this term is given by

Fs;sðx; tÞZK2jsðx; tÞgss
X
is0

~dðxCci; tÞ,qij
sðxCci; tÞ: ð1:11Þ

While amphiphiles do not possess a net colour charge, they also experience a force
due to the colour field, consisting of a part F s,c due to ordinary species, and a part
F s,s due to other amphiphiles

Fs;c Z 2jsðx; tÞ ~dðx; tÞ,
X
s

gss
X
is0

qij
sðx; ci; tÞ: ð1:12Þ

Fs;s ZK
4D

c2
gssj

sðxÞ
X
i

f ~dðxCciÞ,qi, ~dðxÞci

C ½ ~dðxCciÞ ~dðxÞC ~dðxÞ ~dðxCciÞ�,cigj
sðxCciÞ: ð1:13Þ

While the form of the interactions seems straightforward at amesoscopic level, it is
essentially phenomenological, and it is not necessarily easy to relate the
interaction scheme or its coupling constants to either microscopic molecular
characteristics, or to macroscopic phase behaviour. The phase behaviour can be
very difficult to predict beforehand from the simulation parameters, and brute-
force parameter searches are often resorted to (Boghosian et al. 2000).
Phil. Trans. R. Soc. A (2005)
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2. Technical projects

Our three-dimensional lattice Boltzmann code, LB3D, is written in FORTRAN 90
and designed to run on distributed-memory parallel computers, using the
Message Passing Interface (MPI) standard for communication. In each
simulation, the fluid is discretized onto a cuboidal lattice, each lattice point
containing information about the fluid in the corresponding region of space. Each
lattice site requires about a kilobyte of memory per lattice site so that, for
example, a simulation on a 1283 lattice would require around 2.2 GB memory.
The high-performance computing machines on which most of the simulation
work is performed are typically rather heavily used. The situation frequently
arises that while a simulation is running on one machine, CPU time becomes
available on another machine which may be able to run the job faster or cheaper.
The LB3D program has the ability to ‘checkpoint’ its entire state to a file. This
file can then be moved to another machine, and the simulation restarted there,
even if the new machine has a different number of CPUs or even a completely
different architecture. It has been verified that the simulation results are
independent of the machine on which the calculation runs, so that a single
simulation may be migrated between different machines as necessary without
affecting its output. As a conservative rule of thumb, the code runs at over 104

lattice site updates per second per CPU on a fairly recent machine, and has been
observed to have roughly linear scaling up to order 103 compute nodes. A 1283

simulation contains around 2.1!106 lattice sites; running it for 1000 time-steps
requires about an hour of real time, split across 64 CPUs. The largest simulation
we performed used a 10243 lattice. The output from a simulation usually takes
the form of a single floating-point number for each lattice site, representing, for
example, the density of a particular fluid component at that site. Therefore, a
density field snapshot from a 1283 system would produce output files of around
8 MB. Writing data to disk is one of the bottlenecks in large-scale simulations. If
one simulates a 10243 system, each data file is 4 GB in size. LB3D is able to
benefit from the parallel filesystems available on many large machines today, by
using the MPI-IO based parallel HDF5 data format (HDF5 2003). Our code is
very robust regarding different platforms or cluster interconnects: even with
moderate inter-node bandwidths it achieves almost linear scaling for large
processor counts with the only limitation being the available memory per node.
The platforms our code has been successfully used on include various
supercomputers like the IBM pSeries, SGI Altix and Origin, Cray T3E, Compaq
Alpha clusters, NEC SX6, as well as low cost 32- and 64-bit Linux clusters.
However, due to compiler or machine peculiarities it is a time consuming task to
achieve optimum performance on many different platforms. Porting a complex
FORTRAN code like LB3D to new platforms is often very difficult and time-
consuming without the assistance of well-trained staff at the corresponding
computer centres. Some of these problems are due to portability issues with the
FORTRAN language. Also, tuning a code to take full advantage of the machine on
which it runs requires considerable knowledge of the local system’s quirks. It is
hoped that some of the portability issues could be solved in future by well-
designed middleware. Such issues include the fact that location, size, and
duration of temporary filespace change from machine to machine, as do the
methods for invoking compilers and batch queues.
Phil. Trans. R. Soc. A (2005)
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LB3D has successfully been used to study various problems like spinodal
decomposition with and without shear (González-Segredo et al. 2003; Harting
et al. 2004), flow in porous media (Harting et al. 2004), the self-assembly of cubic
mesophases such as the ‘P’-phase (Nekovee & Coveney 2001) in binary water-
surfactant systems, or the cubic gyroid phase in ternary amphiphilic systems
(González-Segredo & Coveney 2004a,b). Before we were able to take advantage
of computational steering techniques, our work usually involved large-scale
parameter searches organized as taskfarming jobs, in order to find the areas of
interest of the available parameter space. The technique of computational
steering (Brooke et al. 2003; Chin et al. 2003; Love et al. 2003) has been used
successfully in smaller-scale simulations to optimize resource usage. Typically,
the procedure for running a simulation of the self-assembly of a mesophase would
be to set up the initial conditions, and then submit a batch job to run for a
certain, fixed number of time-steps. If the time-scale for structural assembly is
unknown then the initial number of time-steps for which the simulation runs is,
at best, an educated guess. It is not uncommon to examine the results of such a
simulation once they return from the batch queue, only to find that a simulation
has not been run for sufficient time (in which case it must be tediously
resubmitted), or that it ran for too long, and the majority of the computer time
was wasted on simulation of an uninteresting equilibrium system showing no
dynamical behaviour. Another unfortunate scenario often occurs when the phase
diagram of a simulated system is not well known, in which case a simulation may
evolve away from a situation of interest, wasting further CPU time.
Computational steering, the ability to watch and control a calculation as it
runs, can be used to avoid these difficulties: a simulation which has equilibrated
may be spotted and terminated, preventing wastage of CPU time. More
powerfully, a simulation may be steered through parameter space until it is
unambiguously seen to be producing interesting results: this technique is very
powerful when searching for emergent phenomena, such as the formation of
surfactant micelles, which are not clearly related to the underlying simulation
parameters. Steering is performed using the RealityGrid steering library which
has been developed by collaborators at the University of Manchester. The library
was built with the intention of making it possible to add steering capabilities to
existing simulation codes with as few changes as possible, and in as general a
manner as possible. Once the application has initialized the steering library and
informed it which parameters are to be steered, then after every timestep of the
simulation, it is possible to perform tasks such as checkpointing the simulation,
saving output data, stopping the simulation, or restarting from an existing
checkpoint. When a steered simulation is started, a Steering Grid Service (SGS)
is also created, to represent the steerable simulation on the Grid. The SGS
publishes its location to a registry service, so that steering clients may find it.
This design means that it is possible for clients to dynamically attach to and
detach from running simulations.

Successful computational steering requires that the simulation operators have
a good understanding of what the simulation is doing, in real time: this in turn
requires good visualization capabilities. Each running simulation emits output
files after certain periods of simulation time have elapsed. The period between
output emission is initially determined by guessing a time-scale over which the
simulation will change in a substantial way; however, this period is a steerable
Phil. Trans. R. Soc. A (2005)
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parameter, so that the output rate can be adjusted for optimum visualization
without producing an excessive amount of data. The LB3D code itself will only
emit volumetric datasets as described above; these must then be rendered into a
human-comprehensible form through techniques, including volume-rendering,
isosurfacing, ray-tracing, slice planes and Fourier transforms. The process of
producing such comprehensible data from the raw datasets is itself computa-
tionally intensive, particularly if it is to be performed in real time, as required for
computational steering. For this reason, we use separate visualization clusters to
render the data. Output volumes are sent from the simulation machine to the
remote visualization machine, so that the simulation can proceed independently
of the visualization; these are then rendered using the open source Visualization
Toolkit (VTK) (Schroeder et al. 2003) visualization library into bitmap images,
which can in turn be multicast over the AccessGrid, so that the state of the
simulation can be viewed by scientists around the globe. In particular, this was
demonstrated by performing and interacting with a simulation in front of a live
worldwide audience, as part of the SCGlobal track of the SuperComputing 2004
conference. The RealityGrid steering architecture was designed in a sufficiently
general manner that visualization services can also be represented by SGS: in
order to establish a connection between the visualization process and the
corresponding simulation, the simulation SGS can be found through the
Registry, and then interrogated for the information required to open the link.

In order to be able to deploy the above described components as part of a
usable simulation Grid, a substantial amount of coordination is necessary, so
that the end user is able to launch an entire simulation pipeline, containing
migratable simulation, visualization, and steering components, from a unified
interface. This requires a system for keeping track of which services are available,
which components are running, taking care of the checkpoints and data which
are generated, and to harmonize communication between the different
components. This was achieved through the development of a Registry service,
implemented using the OGSI::Lite (McKeown 2003) toolkit. The RealityGrid
steering library (Chin et al. 2003) communicates with the rest of the Grid by
exposing itself as a ‘Grid Service’. Through the Registry service, steering clients
are able to find, dynamically attach to, communicate with, and detach from
steering services to control a simulation or visualization process.

Large lattices require a highly scalable code, access to high performance
computing, terascale storage facilities and high performance visualization. LB3D
provides the first of these, while the others are being delivered by the major
computing centres. We expect to be able to run our simulations in an even more
efficient way due to the significant worldwide effort being invested in the
development of reliable computational Grids. These are a collection of
geographically distributed and dynamically varying resources, each providing
services such as compute cycles, visualization, storage, or even experimental
facilities. The major difference between computational Grids and traditional
distributed computing is the transparent sharing and collective use of resources,
which would otherwise be individual and isolated facilities. Perhaps at some
point computational Grids will offer information technology what electricity
Grids offer for other aspects of our daily life: a transparent and reliable resource
that is easy to use and conforms to commonly agreed standards (Foster &
Kesselman 1999; Berman et al. 2003). Robust and smart middleware will find the
Phil. Trans. R. Soc. A (2005)
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best available resources in a transparent way without the user having to care
about their location. Unfortunately, reliable and robust computational Grids are
not available yet. We used various different demonstration Grids which were
assembled especially for a given event or were intended for use as prototyping
platforms rather than usable production Grids. These mainly included Grids
coupling major compute resources in the UK and the biggest effort took place
within the TeraGyroid project (Blake et al. 2004; Blake et al. 2005) where the
main machines of the UK’s national High Performance Computing (HPC)
centres were coupled with the TeraGrid facilities in the US through a custom
high-performance network. In total, about 5000 CPUs were part of this Grid.
Collaborative steering sessions with active participants on two continents and
observers worldwide were made possible through this approach.
3. Scientific projects

(a ) Complex fluids under shear

In many industrial applications, complex fluids are subject to shear forces. For
example, axial bearings are often filled with fluid to reduce friction and transport
heat away from the most vulnerable parts of the device. It is very important to
understand how these fluids behave under high shear forces, in order to be able to
build reliable machines and choose the proper fluid for different applications. In
our simulations we use Lees–Edwards boundary conditions, which were
originally developed for molecular dynamics simulations in 1972 (Lees &
Edwards 1972) and have been used in lattice Boltzmann simulations by different
authors before (Wagner & Yeomans 1999; Wagner & Pagonabarraga 2002;
Harting et al. 2004). We applied our model to study the behaviour of binary
immiscible and ternary amphiphilic fluids under constant and oscillatory shear.
In the case of spinodal decomposition under constant shear, the first results have
been published in Harting et al. (2004). The phase separation of binary
immiscible fluids without shear has been studied in detail by different authors,
and LB3D has been shown to model the underlying physics successfully
(González-Segredo et al. 2003). In the non-sheared studies of spinodal
decomposition, it has been shown that lattice sizes need to be large in order to
overcome finite size effects: 1283 was the minimum acceptable number of lattice
sites (González-Segredo et al. 2003). For high shear rates, systems also have to be
very long because, if the system is too small, the domains interconnect across the
zZ0 and zZnz boundaries to form interconnected lamellae in the direction of the
shear. Such artefacts need to be eliminated from our simulations. Figure 1 shows
an example from a simulation with lattice size 128!128!512. The volume
rendered blue and red areas depict the different fluid species and the arrows
denote the direction of shear. In the case of ternary amphiphilic fluid mixtures
under shear we are interested in the influence of the presence of surfactant
molecules on the phase separation. We also study the stress response and
stability of cubic mesophases such as the gyroid phase (González-Segredo &
Coveney 2004b) or the P-phase (Nekovee & Coveney 2001) under shear. Such
complex fluids are expected to exhibit non-Newtonian properties (see below).
Computational steering has turned out to be very useful for checking on finite
size effects during a sheared fluid simulation, since the human eye is extremely
Phil. Trans. R. Soc. A (2005)
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Figure 1. Spinodal decomposition under shear. Differently coloured regions denote the majority of
the corresponding fluid. The arrows depict the movement of the sheared boundaries. (Movie
available in online version.)
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good at spotting the sort of structures indicative of such effects. Implementing an
algorithm to automatically recognize ‘unphysical’ behaviour is a highly non-
trivial task in comparison.

(b ) Flow in porous media

Studying transport phenomena in porous media is of great interest in fields
ranging from oil recovery and water purification to industrial processes like
catalysis. In particular, the oilfield industry uses complex, non-Newtonian,
multicomponent fluids (containing polymers, surfactants and/or colloids, brine,
oil and/or gas), for processes like fracturing, well stimulation and enhanced oil
recovery. The rheology and flow behaviour of these complex fluids in a rock is
different from their bulk properties. It is therefore of considerable interest to be
able to characterize and predict the flow of these fluids in porous media. From
the point of view of a modelling approach, the treatment of complex fluids in
three-dimensional complex geometries is an ambitious goal since the lattice has
to be large enough to resolve individual structures. The advantage of lattice
Boltzmann (or lattice gas) techniques is that complex geometries can be
modelled with ease. Synchrotron based X-ray microtomography (XMT) imaging
techniques provide high-resolution, three-dimensional digitized images of rock
samples. By using the lattice Boltzmann approach in combination with these
high-resolution images of rocks, not only is it possible to compute macroscopic
transport coefficients, such as the permeability of the medium, but also
information on local fields, such as velocity or fluid densities, can be obtained
at the pore scale, providing a detailed insight into local flow characterization and
supporting the interpretation of experimental measurements (Auzerais et al.
1996). The XMT technique measures the linear attenuation coefficient from
which the mineral concentration and composition of the rock can be computed.
Morphological properties of the void space, such as pore size distribution and
tortuosity, can be derived from the tomographic image of the rock volume, and
the permeability and conductivity of the rock can be computed (Spanne et al.
1994). The tomographic data are represented by a reflectivity greyscale value,
where the linear size of each voxel is defined by the imaging resolution, which is
Phil. Trans. R. Soc. A (2005)
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Figure 2. Rendering of 4.9 mm resolution X-ray microtomographic data of a 5123 sample of
Bentheimer sandstone. The pore space is shown in red, while the rock is represented in blue.

Figure 3. An originally fully fluid saturated rock is being invaded by another immiscible fluid using
a body force gaccnZ0.003. The oil slowly pushes the other fluid component out of the rock pores
until the rock is fully saturated by oil at tZ30 000. For better visability only the invading fluid is
shown. (Movie available in online version.)
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usually on the order of micrometres. By introducing a threshold to discriminate
between pore and rock sites, these images can be reduced to a binary (0’s and 1’s)
representation of the rock geometry. Utilising the lattice Boltzmann method,
single phase or multiphase flow can then be described in these real porous media.

Lattice Boltzmann and lattice gas techniques have already been applied to
study single and multiphase flow through three-dimensional microtomographic
reconstruction of porous media. For example, Martys & Chen (1996) and
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Ferréol & Rothman (1995) studied relative permeabilities of binary mixtures in
Fontainebleau sandstone. These studies validated the model and the simulation
techniques, but were limited to small lattice sizes, of the order of 643. Simulating
fluid flow in real rock samples allows us to compare simulation data with
experimental results obtained on the same, or similar, pieces of rock. For a
reasonable comparison, the size of the rock used in lattice Boltzmann simulations
should be of the same order of magnitude as the system used in the experiments,
or at least large enough to capture the rock’s topological features. The more
inhomogeneous the rock, the larger the sample size needs to be in order to
describe the correct pore distribution and connectivity. Another reason for
needing to use large lattice sizes is the influence of boundary conditions and
lattice resolution on the accuracy of the lattice Boltzmann method. It has been
shown (see for example He et al. 1997; Chen & Doolen 1998 and references
therein) that the BGK (Bhatnagar et al. 1954) approximation of the LBE which
is commonly used causes so-called bounce-back boundaries to become inaccurate,
resulting in effects such as the computed permeability being a function of the
viscosity. This effect can be limited by lowering the viscosity and increasing the
lattice resolution. To accurately describe hydrodynamic behaviour using lattice
Boltzmann simulations, the Knudsen number, which represents the ratio of the
mean free path of the fluid particles and the characteristic length-scale of the
system (such as the pore diameter), has to be small. If the pores are resolved with
an insufficient number of lattice points, finite size effects arise, leading to an
inaccurate description of the flow field. In practice, at least 5–10 lattice sites are
needed to resolve a single pore. Therefore, in order to be able to simulate realistic
sample sizes, we need large lattices of the order of 5123.

Using LB3D, we are able to simulate drainage and imbibition processes in a 5123

subsample of Bentheimer sandstone X-ray tomographic data. The whole set of
XMT data represented the image of a Bentheimer sample of cylindrical shape with
diameter 4 mm and length 3 mm. The XMT data were obtained at the European
Synchrotron Research Facility (Grenoble) at a resolution of 4.9 mm, resulting in a
data set of approximately 816!816!612 voxels. Figure 2 shows a snapshot of the
5123 subsystem.We compare simulated velocity distributions with experimentally
obtained magnetic resonance imaging (MRI) data of oil and brine infiltration into
saturated Bentheimer rock core (Sheppard et al. 2003). The rock sample used in
these MRI experiments had a diameter of 38 mm and was 70 mm long and was
imaged with a resolution of 280 mm. The system simulated was smaller, but still of
a similar order of magnitude and large enough to represent the rock geometry. On
the other hand, the higher space resolution provided by the simulations allows a
detailed characterization of the flow field in the pore space, hence providing a
useful tool to interpret the MRI experiments, for example in identifying regions
of stagnant fluid. Figure 3 shows an example from a binary invasion study.
A rock which is initially fully saturated with ‘water’ (blue), is being invaded by ‘oil’
(red) from the right side. The lattice size is 5123 and the forcing level is set to
gaccnZ0.003. In figure 3, only the invading fluid component is shown, i.e. only areas
where oil is the majority component are rendered. Periodic boundary conditions
are applied, and fluid leaving the system on the left side is converted to oil before
re-entering on the opposite side. After 5000 time-steps, the oil has invaded about
one quarter of the system already and after 25 000 time-steps only small regions of
the rock pore space are still filled with water. After 30 000 time-steps, the water
Phil. Trans. R. Soc. A (2005)

http://rsta.royalsocietypublishing.org/


1907Large-scale lattice Boltzmann simulations

 on June 3, 2010rsta.royalsocietypublishing.orgDownloaded from 
component has been fully pushed out of the rock. This example only covers binary
(oil/water) mixtures of Newtonian fluids, since this is a first and necessary step in
the understanding of multiphase fluid flow in porous media (Harting et al. 2004).
However, we are able to study the flow of binary immiscible fluids with an
additional amphiphilic component in porous media and expect results to be
presented elsewhere in the near future.
(c ) The cubic gyroid mesophase

It was recently shown by González-Segredo & Coveney (2004b) that the
dynamical self-assembly of a particular amphiphile mesophase, the gyroid, can be
modelled using the lattice Boltzmann method. This mesophase was observed to
form from a homogeneous mixture, without any external constraints imposed to
bring about the gyroid geometry, which is an emergent effect of the mesoscopic
fluid parameters. It is important to note that thismethod allows examination of the
dynamics of mesophase formation, since most treatments to date have focussed on
properties or mathematical description (Seddon & Templer 1993; Große &
Brauckmann 1997; Schwarz & Gompper 1999; Gandy & Klinowski 2000) of the
static equilibrium state. In addition to its biological importance, there have been
recent attempts (Chan et al. 1999) to use self-assembling gyroids to construct
nanoporous materials. During the gyroid self-assembly process, several small,
separated gyroid-phase regions or domainsmay start to form, and then grow. Since
the domains evolve independently, the independent gyroid regions will in general
not be identical, and can differ in orientation, position, or unit cell size; grain-
boundary defects arise between gyroid domains. Inside a domain, there may be
dislocations, or line defects, corresponding to the termination of a plane of unit
cells; there may also be localized non-gyroid regions, corresponding to defects due
to contamination or inhomogeneities in the initial conditions. Understanding such
defects is, therefore, important for our knowledge of the dynamics of surfactant
systems, and crucial for an understanding of how best to produce mesophases
experimentally and industrially. In small-scale simulations of the gyroid, the
mesophase will evolve to fill the simulated region perfectly, without defects. As the
lattice size grows, it becomes more probable that multiple gyroid domains will
emerge independently, so that grain-boundary defects are more likely to appear,
and the time required for localized defects to diffuse across the lattice increases,
making it more likely that defects will persist. Therefore, examination of the defect
behaviour of surfactant mesophases requires the simulation of very large systems.
Figure 4 shows an example of a 1283 system after 100 000 simulation time-steps.
Multiple gyroid domains have formed and the close-up shows the extremely
regular, crystalline, gyroid structure within a domain. Figure 5 demonstrates some
of the most interesting properties of the gyroid mesophase: two labyrinths mainly
consisting of water and oil counterparts are enclosed by the gyroid minimal surface
at which the surfactant molecules accumulate. The characteristic triple junctions
can be seen clearly.

The TeraGyroid experiment (Blake et al. 2005) addressed a large-scale
problem of genuine scientific interest and showed how intercontinental Grids
permit the use of novel techniques in collaborative computational science, which
can dramatically reduce the time to insight. TeraGyroid used computational
steering over a Grid to study the self-assembly and dynamics of gyroid
Phil. Trans. R. Soc. A (2005)
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Figure 5. Structure of the two labyrinths enclosed by a gyroid minimal surface, showing the
characteristic triple junctions.

Figure 4. A volume rendered dataset of a 1283 system after 100 000 simulation time-steps. Various
gyroid domains have formed and the close-up shows the extremely regular, crystalline, gyroid
structure within a domain. (Movie available in online version.)
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mesophases using the largest set of lattice Boltzmann simulations ever
performed. Around the Supercomputing 2003 conference, we were able to
simulate gyroid formation and defect behaviour harnessing, the compute power
of a large fraction of the UK and US HPC facilities. Altogether we were able to
use about 400 000 CPU hours and generate 2 TB of simulation data. In order to
make sure our simulations are virtually free of finite size effects, we simulated
different system sizes from 643 to 10243, usually for about 100 000 time-steps. In
order to study the long-term behaviour of the gyroid mesophase, some
simulations have even run for one million time-steps. For 100 000 time-steps
we found that 2563 or even 1283 simulations do not suffer from finite size effects,
but after very long simulation times we might even have to move to larger
Phil. Trans. R. Soc. A (2005)
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Figure 6. In order to eliminate finite size effects from simulations, very large lattice sizes are
needed. If one is interested in the statistical behaviour of defects, then the lattice size has to be
increased even more, since otherwise only a limited number of defects can be found in the system.
This figure shows a snapshot from what we believe to be the largest ternary lattice Boltzmann
simulation ever performed, on a 10243 lattice.

(b) (c)(a)

Figure 7. A sheared gyroid mesophase: (a) before the onset of shear, (b) at the onset of shear and
(c) after long shear times.
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lattices. Even with the longest possible simulation times, we were not able to
generate a ‘perfect’ crystal. Instead, either differently orientated domains can
still be found or individual defects are still moving around. It is of particular
interest to study the exact behaviour of the defect movement, which can be done
by gathering statistics of the simulation data by counting and tracking individual
defects. Gathering useful statistics implies large numbers of measurements and
therefore large lattices, which is the reason for the 5123 and 10243 simulations
performed. The memory requirements exceed the available resources on most
supercomputers and limits us to a small number of machines. Also, it requires
substantial amounts of CPU time to reach suffcient simulation times. In the case
of the 10243 system, 2048 CPUs of a recent Compaq Alpha cluster are only able
to simulate about 100 simulation time-steps per hour. Running for 100 000 time-
steps would require more than two million CPU hours or 42 days and is therefore
unfeasible. Also, handling the data files which are 4 GB each and checkpoint files
which are 0.5 TB each is very awkward with the infrastructure available today.
In order to be able to gain useful data from the large simulations, we first run a
1283 system with periodic boundary conditions, until it forms a gyroid. This
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system is then duplicated 512 times to produce a 10243 gyroid system. In order to
reduce effects introduced due to the periodic upscaling, we perturb the system
and let it evolve. We anticipate that the unphysical effects introduced by the
upscaling process will decay after a comparably small number of time-steps, thus
resulting in a system that is comparable to one that started from a random
mixture of fluids. This has to be justified by comparison with data obtained from
test runs performed on smaller systems. Figure 6 shows a snapshot of a volume
rendered dataset from the upscaled 10243 system at 1000 time-steps after the
upscaling process. The unphysical periodic structures introduced by the
individual 1283 systems can still clearly be seen.

Currently, work is in progress to study the stability of the gyroid mesophase.
We are interested in the influence of perturbation on a gyroid and the strength of
the perturbation needed to break up a well-developed mesophase. Similar studies
are performed experimentally by applying constant or oscillatory shear. Here, we
study the dependence of the gyroid stability on the shear rate, and expect to find
evidence of the non-Newtonian properties of the fluid. An example from those
studies can be seen in figure 7, which shows three snapshots of the same
simulation. The first shows the liquid crystal before the onset of shear, the second
only a few hundred time-steps after shear has been turned on and the third image
demonstrates how the gyroid melts if the shear stress becomes too strong.

As seen before, simulation data from liquid crystal dynamics can be visualized
using isosurfacing or volume rendering techniques. The human eye has a
remarkable ability to easily distinguish between regions where the crystal
structure is well developed and areas where it is not. However, manual analysis
of large amounts of simulation data is not feasible. In the case of the TeraGyroid
project, about 2 TB of data would have to be checked and catalogued manually.
This task would keep an individual busy for years. Therefore, computational
methods for defect detection and tracking are required. Developing algorithms to
detect and track defects is a non-trivial task, however, since defects can occur
within and between domains of varying shapes and sizes and over a wide variety of
length and time-scales. A standard method to analyse simulation data is the
calculation of the three-dimensional structure function Sðk; tÞhð1=V Þ f0

kðtÞ
�� ��2,

where V is the number of cites of the lattice, f0
kðtÞ the Fourier transform of the

fluctuations of the order parameter f 0hfKhfi, and k is the wave vector
(González-Segredo et al. 2003; González-Segredo & Coveney 2004a). S(k, t) can
easily be calculated, but only gives general information about the crystal
development (Hajduk et al. 1994; Laurer et al. 1997; González-Segredo & Coveney
2004b). It does not allow one to detect where the defects are located or how many
there are, nor does it furnish access to information about the number of differently
oriented gyroid domains. S(k, t) is given for a 1283 system at time-steps tZ10 000,
100 000 and 700 000 in figure 8.We simulate for onemillion time-steps—more than
an order of magnitude longer than any other LB3D simulation performed before
the TeraGyroid (TeraGyroid 2003) project. The initial condition of the simulation
is a random mixture with maximum densities of 0.7 for the immiscible fluids and
0.6 for surfactant. The coupling constant gss is set to K0.0045 and the coupling
between surfactant and the other fluids is set to gcsZK0.006. In order to compare
our data to experimentally obtained SAXS data (Hajduk et al. 1994), we sum the
structure factor in the x-direction; Xmax denotes the value of the largest peak
normalized by the number of lattice sites in the direction of summation (128 in this
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case; Harting et al. in press). Gyroid assembly is evident due to the eight peaks
of the structure factor which become higher with ongoing simulation time. At
tZ700 000, Xmax reaches 197.00 and most of the previously existing domains have
merged into a single one. Only a few defects are left of which two can be spotted
visually at the right corner of the volume rendered visualization and the centre of
the top surface (denoted by the white arrows). The structure factor analysis does
not provide any information about the size, position or number of individual
defects in the system. Therefore, we developed more advanced algorithms for the
detection and tracking of defects. As a first order approach, the data to be analysed
can be reduced by cutting the three-dimensional data sets into slabs and projecting
them onto a two-dimensional plane. By using a raytracing algorithm for the
projection, we obtain regular patterns in areas where the gyroid is perfectly
developed and solid planes in defective areas. We developed two algorithms which
use the projection data to separate the defective areas from the perfect crystal. The
first approach is based on a generic pattern recognition algorithm and should work
with all liquid crystals that form a regular pattern, while the second has been
developed with our particular problem in mind and is not known to work with
systems other than the gyroid mesophase. However, it is about an order of
magnitude faster and the general principles underlying it should be applicable to
different systems as well. The first approach is based on the regularity or
periodicity of patterns and was developed by Chetverikov and Hanbury in 2001
(Chetverikov & Hanbury 2002) who applied it to patterns from the textile
industry. It is assumed that defect-free patterns are homogeneous and show some
periodicity. The algorithm searches for areas which are significantly less regular
(i.e. aperiodic) than the bulk of the dataset by computing regularity features for a
set of windows and identifying defects as outliers. The regularity is quantified by
computing the periodicity of the normalized autocorrelation function in polar
coordinates. In short, for every window a regularity value is computed. If this value
differs by more than a defined threshold value from the median of all window
regularity values, the area is accordingly classified as a defect. For a more detailed
description of the algorithm see (Chetverikov 2000; Chetverikov & Hanbury 2002;
Harting et al. in press). The second approach encapsulates knowledge about the
patterns produced by regular and defect regions. As a consequence, it is an order of
magnitude faster than the pattern recognition code. For each slab image, the
algorithm creates a regular mesh in areas where the gyroid structure is well
developed, and an irregular mesh in defective areas. The regions of regular mesh
are discarded, leaving only mesh that describes the perimeters of defect regions.
A flood-fill algorithm is applied to these datasets to locate distinct defect regions.
The output data of both detection algorithms for all two-dimensional projections
of a three-dimensional dataset can be used to reconstruct three-dimensional
volume data that only consists of defect regions. Figure 9 shows reconstructed
datasets at tZ340 000, 500 000 and 999 000 which have been detected using the
pattern recognition approach. However, the results obtained from the mesh
generator are similar. Even at tZ340 000 a very large region of the system has not
yet formed a well-defined gyroid phase. 160 000 time-steps later, the main defects
are pillar shaped ones at the centre and at the corners of the visualized systems.
Due to the periodic boundary conditions, the corner defects are connected and
should be regarded as a single one. As can be seen from the analysis at tZ999 000,
defects in the gyroid mesophase are very stable in size as well as in their position.
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Figure 9. Volume rendered visualization of the order parameter at tZ340 000, 500 000 and 999 000.
Only the defects are shown as they have been isolated from the full datasets using the pattern
recognition algorithm. (Movie available in online version.)
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Figure 8. Three-dimensional structure factor of the order parameter at time-steps tZ10 000,
100 000 and 700 000, lattice size 1283 and simulation parameters as given in the text. For
comparability with SAXS experimental data, we display the total structure factor in the
x -direction XZ

P
kx Sðk; tÞ. Xmax denotes the value of the largest peak divided by the number of

lattice sites in the direction of summation (128 in this case). The lower half of the figure shows
volume rendered visualizations of the corresponding order parameters and the white arrows are a
guide for the eye to spot some defective areas at the top surface and the right corner at tZ700 000.
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The pattern recognition algorithm is less efficient than mesh generation. However,
it is not limited to simulations of gyroid mesophases and more robust with regrd to
small fluctuations of the dataset. In the gyroid case, it is more efficient to use
the results from the mesh generator to select a smaller number of datasets for
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post-processing using the pattern recognition algorithm since the computational
effort involved in the pattern recognition can be substantial. For a more detailed
description of the algorithms see (Harting et al. in press). Currently, we are
working on more geometrically based algorithms to efficiently detect defects and
results will be published elsewhere in the near future.
4. Conclusions

During the last 2 years, we have worked on various scientific projects using our
lattice Boltzmann code LB3D. All of these projects reached the limits of the HPC
resources available to us today. However, without the benefits obtained from
software development within the RealityGrid project, none of these projects
would have been possible at all. These improvements include the steering
facilities, code optimizations, IO optimizations as well as the platform
independent checkpointing and migration routines which have been contributed
by various people within the project. Without the lightweight Grid Service
Container OGSI::Lite (McKeown 2003) projects like the TeraGyroid experiment
would not have been possible since existing middleware toolkits such as Globus
are rather heavyweight, requiring substantial effort and local tuning on the part
of systems administrators to install and maintain. This effort cannot be expected
from the average scientist who is planning to use a computational Grid (Chin &
Coveney 2004). The simulation pipeline requires simulation, visualization, and
storage facilities to be available simultaneously, at times when their human
operators can reasonably expected to be around. This is often dealt with by
manual reservation of resources by systems administrators, but the ideal solution
would involve automated advance reservation and co-allocation procedures. The
most exciting project involving RealityGrid during the last two years was the
TeraGyroid experiment. Hundreds of individuals have worked together to build a
transcontinental Grid not only as a demonstrator for the Grid techniques
available today, but to perform a scientific project. Since we would not have been
able to gain as many new results from the simulations performed during that
period without the active use of Grid technologies, we have shown that the
advent of computational Grids will be of great benefit for computational
scientists.
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Atomic and Molecular Physics), and E.S. Boek and J. Crawshaw (Schlumberger Cambridge
Research) for fruitful discussions and E. Breitmoser from the Edinburgh Parallel Computing
Centre for her contributions to our lattice Boltzmann code. We are grateful to the UK Engineering
and Physical Sciences Research Council (EPSRC) for funding much of this research through
RealityGrid grant GR/R67699 and to EPSRC and the National Science Foundation (NSF) for
funding the TeraGyroid project. This work was partially supported by the National Science
Foundation under NRAC grant MCA04N014 and PACI grant ASC030006P, and utilised computer
resources at the Pittsburgh Supercomputer Center, the National Computational Science Alliance
and the TeraGrid. We acknowledge the European Synchrotron Radiation Facility for provision of
synchrotron radiation facilities and we would like to thank P. Cloetens for assistance in using
beamline ID19, as well as J. Elliott and G. Davis of Queen Mary, University of London, for their
work in collecting the raw data and reconstructing the X-ray microtomography data sets used in
our Bentheimer sandstone images.
Phil. Trans. R. Soc. A (2005)

http://rsta.royalsocietypublishing.org/


J. Harting and others1914

 on June 3, 2010rsta.royalsocietypublishing.orgDownloaded from 
References

Auzerais, F. M., Dunsmuir, J., Ferreol, B. B., Martys, N., Olson, J., Ramakrishnan, T., Rothman,

D. & Schwartz, L. 1996 Geophys. Res. Lett. 23, 705.

Benzi, R., Succi, S. & Vergassola, M. 1992 Phys. Rep. 222, 145.

Berman, F., Fox, G. & Hey, T. 2003 Grid computing: making the global infrastructure a reality.

New York: Wiley.

Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 Phys. Rev. 94, 511.

Blake, R., Coveney, P., Clarke, P. & Pickles, S. 2004 EPSRC final report 2004.

Blake, R. J., Coveney, P. V., Clarke, P. & Pickles, S. M. 2005 The TeraGyroid experiment—

Supercompuing 2003. Scientific Programming 13, 1–17.

Boghosian, B. M., Coveney, P. V. & Love, P. J. 2000 Proc. R. Soc. A 456, 1431.

Brooke, J. M., Coveney, P. V., Harting, J., Jha, S., Pickles, S. M., Pinning, R. L. & Porter, A. R.

2003 Computational Steering in Reality Grid. In Proceedings of the UK e-Science All Hands

Meeting, September 2–4 2003. See http://www.realitygrid.org/eprints2003.html.

Chan, V. Z. H., Hoffman, J., Lee, V. Y., Iatrou, H., Avgeropoulos, A., Hadjichristidis, N., Miller,

R. D. & Thomas, E. L. 1999 Science 286, 1716.

Chapman, S. & Cowling, T. G. 1952 The mathematical theory of non-uniform gases, 2nd edn.

Cambridge: Cambridge University Press.

Chen, S. & Doolen, G. D. 1998 Annu. Rev. Fluid Mech. 30, 329.

Chen, H., Boghosian, B. M., Coveney, P. V. & Nekovee, M. 2000 Proc. R. Soc. A 456, 2043.

Chetverikov, D. 2000 Image Vis. Comput. 18, 975.

Chetverikov, D. & Hanbury, A. 2002 Pattern Recognit. 35, 203. An online demo of the algorithm is

available at http://aramis.ipan.sztaki.hu/strucdef/strucdef.html.

Chin, J. & Coveney, P. V. 2002 Phys. Rev. E 66, 016 303.

Chin, J. & Coveney, P. V. 2004 Towards tractable toolkits for the Grid: a plea for lightweight,

usable middleware 2004. See http://www.realitygrid.org/lgpaper.html.

Chin, J., Harting, J., Jha, S., Coveney, P. V., Porter, A. R. & Pickles, S. M. 2003 Contemp. Phys.

44, 417.

Czeslik, C. & Winter, R. 2002 J. Mol. Liq. 98, 283.

Delgado-Buscalioni, R. & Coveney, P. V. 2003 Phys. Rev. E 67, 046 704.
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