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On hydrophobic surfaces, roughness may lead to a transition to a superhydrophobic state, where gas
bubbles at the surface can have a strong impact on a detected slip. We present two-phase lattice Boltzmann
simulations of a Couette flow over structured surfaces with attached gas bubbles. Even though the bubbles
add slippery surfaces to the channel, they can cause negative slip to appear due to the increased roughness.
The simulation method used allows the bubbles to deform due to viscous stresses. We find a decrease of
the detected slip with increasing shear rate which is in contrast to some recent experimental results
implicating that bubble deformation cannot account for these experiments. Possible applications of bubble
surfaces in microfluidic devices are discussed.
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The no-slip boundary condition states that the fluid
velocity at a fluid-solid interface equals that of the solid
surface. Although this boundary condition has been proven
valid at macroscopic scales, it has no microscopic justifi-
cation and is not fulfilled generally [1]. Its validity was
debated already in the early days of fluid mechanics and,
due to recent developments in microfluidics, the interest in
violation of the no-slip boundary condition has revived [2].
In microfluidics, several experiments have found fluid slip
at the boundaries of the flow channels [3,4]. As the slip
length (defined below) has typically a magnitude measured
in nanometers or micrometers, the appearance of slip does
not have noticeable ramifications in macroscopic flows.
However, in microfluidic devices with large surface-to-
volume ratio, surface properties may dramatically affect
the flow resistance. The possibility of engineering slip
properties in a controlled way is therefore crucial for
microfluidic applications.

The slip at fluid-solid boundaries can be quantified by
Navier’s boundary condition, which states that the slip
velocity is proportional to the velocity gradient, i.e., vs �
b�@v=@z� at the surface z � z0. Here, b is the slip length
which is the distance below the surface where the velocity
linearly extrapolates to zero. Higher slip length means
larger slip and lower friction at the boundary.

Mechanisms behind boundary slip include surface
roughness and structural characteristics of roughness
[5,6], roughness-induced dewetting on hydrophobic sur-
faces [7,8], dissolved gas and bubbles on the surface [9–
11], as well as wetting properties [12]. Usually, rough-
ness decreases the slip length due to increased dissipation
and the roughness-induced slip is just an artifact [5].
Theoretically, it was shown that even slippery surfaces, if
rough enough, can provide no-slip boundaries [13].
However, if surfaces are hydrophobic, roughness may in-
crease the slip due to a transition to a superhydrophobic
(Fakir or Cassie) state [14]. Here, liquid cannot enter
between roughness elements but stays at the top of them.
Thus, gas bubbles or layers are formed thereby lubricating

the flow due to a reduced liquid-solid contact area. By
using a surface patterned with a square array of cylindrical
holes, Steinberger et al. found that gas bubbles may also
cause an opposite effect; i.e., slip is reduced if microbub-
bles are present in the holes [10]. Numerically, they found
even negative slip lengths for flow over such a bubble
mattress. Negative slip means that the effective no-slip
plane is inside the channel; i.e., the bubbles increase the
flow resistance. These mechanisms are related to so-called
effective slip and should be distinguished from the
(smaller) intrinsic slip on smooth surfaces. Another pecu-
liarity in the boundary slip is the shear-rate dependence
observed in some experiments but not in others [2]. The
question of whether the shear-rate dependence is a true
property of slip is still to be answered.

As the different mechanisms behind the slip phenome-
non are strongly intertwined, the experimental study of a
single mechanism is a complicated task. Therefore, nu-
merical simulations are attractive as they provide a control-
lable way to change a single property of fluid or surface
while keeping the others unchanged. Most computer simu-
lations thus far have been performed using molecular
dynamics [7,15–17]. For computational reasons molecular
dynamics is limited to length scales of tens of nanometers
and time scales of nanoseconds, which do not comply with
the experimentally relevant scales. Therefore, mesoscopic
lattice Boltzmann (LB) simulations have recently been
applied to study flow in microchannels or along hydro-
phobic surfaces [5,8,12,18,19]. This method allows one to
reach experimentally relevant scales and preserves those
interactions needed to describe the underlying physics.

Our simulations utilize the multiphase LB model by
Shan and Chen [20]. Dynamics of the method is governed
by a discretized Boltzmann equation

 fi�r�ci; t�1��fi�r;t���
1

�
�fi�r;t��f

eq
i �r;t��; (1)

where fi is a distribution function describing the probabil-
ity of finding a particle at position r at time step t, moving
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in lattice direction ci. We use a three-dimensional lattice
with 19 discrete velocities. The right-hand side of Eq. (1)
models the relaxation of the fi towards a local equilibrium
due to collisions among the particles on a time scale given
by the relaxation time �. The mean-field interactions be-
tween particles are given by a force

 F � Gb �r�
X

i

ti �r� ci�ci; (2)

where  � 1� exp���=�0� is an effective mass (� is the
fluid density, �0 a reference density), Gb tunes the strength
of the interaction, and ti’s are weight factors for different
lattice directions. This force term leads to a nonideal
equation of state with pressure P � c2

s��
1
2 c

2
sGb 

2,
where cs is the speed of sound, and it enables simulations
of liquid-vapor systems with surface tension. To model the
wetting behavior at fluid-solid surfaces, a similar interac-
tion is added between the fluid and solid phases, and the
contact angle is tuned by setting a density value �w at the
boundaries [21].

In this Letter we investigate liquid slip in Couette flow,
where the flow is confined between two parallel walls. One
of the walls is patterned with holes and vapor bubbles are
trapped to these holes. Steinberger et al. [10] presented
finite-element simulations of flow over rigid ‘‘bubbles’’ by
applying slip boundaries at static bubble surfaces. The LB
method allows the bubbles to deform if the viscous forces
are high enough compared to the surface tension. We are
also interested in how surface patterning affects the slip
properties of these surfaces, and how bubbles could be
utilized to develop surfaces with special properties for
microfluidic applications.

In our simulations, the lower wall is static and has the
topographical patterning whereas the upper one is smooth
and moved with velocity u0. The distance between walls is
d � 1 �m (40 nodes) in all simulations, and the area
fraction of holes 0.43 unless stated otherwise. The system
boundaries are periodic and a unit cell of the regular array
is included in a simulation. To trap bubbles to holes, some
heterogeneity is needed at the edges of holes in order to pin
the contact line. To this end, we use different wettabilities
for boundaries in contact with the main channel and with
the hole. The protrusion angle ’ (see Fig. 1 for definition)
is varied by changing the bulk pressure of the liquid. A
similar technique to form bubbles on structured surfaces
was used experimentally by Bremond et al. [22]. The
effective slip length can be calculated from the shear stress
� � �dv=dz acting on the upper wall, which is obtained
from the no-slip boundary condition imposed at the fluid-
solid boundaries. Thus the effective slip length reads as
b � �u0=�� d, where � is the dynamic viscosity of the
liquid. b is measured from the top of the structured surface
and Gb is chosen such that the density ratio between liquid
and gas is 22. This ratio is too small for a realistic descrip-
tion of gas bubbles in a liquid. Also, the interface between
both phases is of finite width causing the resistance in the
vapor phase. These limitations of multiphase LB models

do not influence the qualitative insight obtained from our
simulations.

In order to study the effect of a modified protrusion
angle and different surface patternings, we use three differ-
ent arrays of bubbles: i.e., a square array, a rectangular
array where the distance of bubbles is larger in one direc-
tion than in the other, and a rhombic array. These surfaces
have cylindrical holes with radius a � 500 nm and the
area fraction of the holes is equal in all cases. The shear
rate is such that the Capillary number Ca � 0:16. The
Capillary number is the ratio of viscous and surface forces,
i.e., Ca � �aGs=�, where Gs and � are the shear rate and
surface tension, respectively. Snapshots of simulations are
shown in Fig. 2 and the slip lengths obtained are shown in
Fig. 1. The observed behavior is similar to that reported in
[10], where a square array of holes was studied. In particu-
lar, we observe that when the protrusion angle is large
enough the slip length becomes negative. We also see
that the maximum of the slip length is obtained when the
protrusion angle equals zero. Since the area fraction of the
bubbles is the same in all three cases, the results clearly
indicate that slip properties of the surface can be tailored
not only by changing the protrusion angle but also by the
array geometry.

Next, the shear-rate dependence of the slip length is
investigated. As the shear rate and thus the viscous stresses
grow, the bubbles are deformed (see Fig. 2) and the flow
field is modified. Results are shown in Fig. 3(a), where the
slip length is given as a function of the Capillary number
for three different protrusion angles. We also calculate the
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FIG. 1 (color online). Slip length b as a function of protrusion
angle ’. A unit cell of each array is shown in insets and
corresponding results are given by triangles (rhombic array),
diamonds (rectangular array), and circles (square array). The
inset in the top-left corner shows the definition of ’.
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Taylor deformation D � �‘� a�=�‘� a� of the bubbles
by fitting an ellipse to the bubble interface. Here, a and ‘
are the minor and major axes of the ellipse, respectively. A
slightly superlinear relation between D and Ca is observed
[Fig. 3(b)] in accordance with a two-dimensional case in
Ref. [23]. We find that increasing shear rates cause the slip
length to decrease. This behavior is contradictory to those
found in some experiments using surface force apparatuses
(see, e.g., Ref. [24]), where a strong increase in the slip is
observed after some critical shear rate. This shear-rate
dependence has been explained, e.g., with formation and
growth of bubbles [9,11]. However, one should notice that
these experiments are dynamic in nature while we simulate
a steady case. In our simulations there is no formation or
growth of the bubbles, but we determine the slip for given
bubbles of given size. Our results indicate that the defor-
mation of the bubbles and the changes in the flow field
thereby occurring cannot be an explanation for the ob-
served shear-rate dependence. On the other hand, our
results are consistent with [5], where it is shown that
smaller roughness leads to smaller values of a detected
slip. In the present case, the shear reduces the average
height of the bubbles and thus the average scale of the
roughness decreases as well.

As seen above, the slip properties of a bubble mattress
can be tailored by changing the surface patterning. Next,
we consider a surface which has slots with a width of
1 �m, and cylindrical bubbles protruding to the channel
with an angle ’ � 72� [Fig. 2(c)]. We apply shear parallel
and perpendicular to the slots, while the area fraction of the
bubbles (�) is varied by changing the distance between the

grooves (L). According to our results (Fig. 4), b strongly
depends on the flow direction and even the qualitative
behavior changes. When the flow is parallel to the slot a
positive slip is observed, but for perpendicular flow the slip
becomes negative. This observation can be explained by
means of theoretical predictions of Richardson, who
showed that slippery surfaces lead to (macroscopic) no-
slip boundaries if rough enough [13]. Our results support
these predictions. In the case with flow parallel to the
bubbles the streamlines are straight and the flow does not
‘‘see’’ any roughness. However, in the perpendicular di-
rection roughness is caused by the bubbles and negative
slip is observed. The inset of Fig. 4 depicts the scaling
behavior of the slip length as a function of the solid-area
fraction for flow perpendicular to the slots. We see that for
small solid-area fraction the slip length obeys the scaling
law b	�L log�1��� as was recently predicted in
Ref. [6]. Anisotropic behavior has been observed in the
case of flat surfaces composed of stripes with no-slip and
perfect-slip boundary conditions [25,26]. Our simulations
differ from these studies as our bubbles protrude to the
channel thus leading to a larger effect than for a flat
surface. In order to understand less idealized surface pat-
ternings, we study flow over rectangular holes. The aspect
ratio of the holes is chosen such that the longer side is
3 times the smaller one. We observe similar qualitative
behavior (Fig. 4), but the difference in slip length between
the two flow directions is less pronounced. Obviously, by
changing the aspect ratio of the hole, the anisotropic be-
havior of the slip can be tailored. Because of the striking
difference between the slip properties in the two perpen-
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(a) (b) FIG. 3 (color online). (a) Slip length as
a function of capillary number for a
square array of bubbles with three differ-
ent protrusion angles, ’ � 63�, 68�, and
71� (from uppermost to lowermost). In
the inset cross sections of liquid-gas
interfaces for four capillary numbers
are shown. (b) Taylor deformation as a
function of Capillary number for the
bubble with ’ � 71�. These Ca values
correspond to shear rates of the order of
10�6–10�7 s�1.

FIG. 2 (color online). Snapshots of
simulations of bubbles on structured sur-
faces. Shown are a square array of bub-
bles with Capillary number (a) Ca �
0:02 and (b) Ca � 0:4, and (c) a slot
with a cylindrical bubble. In each case
a unit cell is shown.
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dicular directions, we believe that this kind of surfaces may
find applications in microfluidic devices. Anisotropic sur-
faces could be used to suppress the flow in an unwanted
direction while enhancing it in another one. The suppress-
ing behavior is further amplified by the shear-rate depen-
dence, since the negative slip is growing with the shear
rate.

To conclude, we simulated Couette flow in a micro-
channel where one of the walls is patterned and micro-
bubbles are attached to the pattern. We found that the slip
properties of the surface can be tailored by changing the
hole array and that such a surface with bubbles may yield
negative slip, i.e., increased resistance to flow, if bubbles
are strongly protruding to the channel. Our results can be
qualitatively compared to previous results [10], but over-
come their limitation of a static liquid-vapor interface. This
allowed us to study the influence of the shear rate on the
deformation of the interface and its effect on the measured
slip. We found that the slip decreases with increasing shear
rate demonstrating that shear induced bubble deformation
cannot explain recent experimental findings where slip
increases with increasing shear rate [24]. We proposed a
special surface patterning which can be used to produce
surfaces where the slip is positive in one direction and
negative in the perpendicular one. Such a surface might be
useful to construct microfluidic devices with tunable flow
throughput which could be controlled by adding bubble
ridges parallel or perpendicular to the flow. In addition, we
have shown that the throughput could be tailored by tuning

the bulk pressure, i.e., the protrusion angle, or the shear
rate.
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FIG. 4. Slip length as a function of hole area fraction. Filled
circles denote values for the flow parallel to the slots and
triangles relate to the perpendicular direction. Corresponding
open symbols are for a surface with rectangular holes (’ � 72�).
The inset shows the normalized slip length as a function of the
solid-area fraction, where the dashed line is the theoretical
prediction for small solid-area fractions.
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