The isotope effect on the Henry's law coefficients of methane in
aqueous solution (H/D and C-12/C-13 substitution) are interpreted using
the statistical mechanical theory of condensed phase isotope effects.
The missing spectroscopic data needed for the implementation of the
theory were obtained either experimentally (infrared measurements), by
computer simulation (molecular dynamics technique), or estimated using
the Wilson's GF matrix method. The order of magnitude and sign of both
solute isotope effects can be predicted by the theory. Even a crude
estimation based on data from previous vapor pressure isotope effect
studies of pure methane at low temperature can explain the inverse
effect found for the solubility of deuterated methane in water. (C)
2002 American Institute of Physics