192 research outputs found

    Slide to the Left and Slide to the Right: Motor Coordination in Neurons

    Get PDF
    Molecular motors employ specific adaptor proteins to dock on transport cargos. Reporting in The Journal of Cell Biology, Fu and Holzbaur (2013) show that the adaptor JNK interacting protein 1 (JIP1) binds kinesin-1 and dynactin and controls bidirectional axonal amyloid precursor protein trafficking, suggesting a regulatory role for adaptors during cargo transport

    Пути улучшения использования организационно-комбинационного потенциала управленческого труда в современной экономике на основе более точного учёта в денежной форме его затрат и результатов

    Get PDF
    В задачу нашего исследования не входит анализ механизмов и итогов радикальных рыночных реформ 90-х годов в целом. Мы остановимся только на исследовании ценовых отношений и деформации оплаты труда руководителей и специалистов. Но все же, хотя бы кратко, нужно дать характеристику радикальных рыночных реформ в целом, так как часть (цены и зарплату управленцев) нельзя понять в отрыве от него

    Retromer and the cation-independent mannose 6-phosphate receptor-Time for a trial separation?

    Get PDF
    The retromer cargo-selective complex (CSC) comprising Vps35, Vps29 and Vps26 mediates the endosome-to-Golgi retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR). Or does it? Recently published data have questioned the validity of this long-established theory. Here, the evidence for and against a role for the retromer CSC in CIMPR endosome-to-Golgi retrieval is examined in the light of the new data that the SNX-BAR dimer is actually responsible for CIMPR retrieval

    Amyotrophic lateral sclerosis (ALS)-associated VAPB-P56S inclusions represent an ER quality control compartment

    Get PDF
    BACKGROUND: Protein aggregation and the formation of intracellular inclusions are a central feature of many neurodegenerative disorders, but precise knowledge about their pathogenic role is lacking in most instances. Here we have characterized inclusions formed in transgenic mice carrying the P56S mutant form of VAPB that causes various motor neuron syndromes including ALS8.RESULTS: Inclusions in motor neurons of VAPB-P56S transgenic mice are characterized by the presence of smooth ER-like tubular profiles, and are immunoreactive for factors that operate in the ER associated degradation (ERAD) pathway, including p97/VCP, Derlin-1, and the ER membrane chaperone BAP31. The presence of these inclusions does not correlate with signs of axonal and neuronal degeneration, and axotomy leads to their gradual disappearance, indicating that they represent reversible structures. Inhibition of the proteasome and knockdown of the ER membrane chaperone BAP31 increased the size of mutant VAPB inclusions in primary neuron cultures, while knockdown of TEB4, an ERAD ubiquitin-protein ligase, reduced their size. Mutant VAPB did not codistribute with mutant forms of seipin that are associated with an autosomal dominant motor neuron disease, and accumulate in a protective ER derived compartment termed ERPO (ER protective organelle) in neurons.CONCLUSIONS: The data indicate that the VAPB-P56S inclusions represent a novel reversible ER quality control compartment that is formed when the amount of mutant VAPB exceeds the capacity of the ERAD pathway and that isolates misfolded and aggregated VAPB from the rest of the ER. The presence of this quality control compartment reveals an additional level of flexibility of neurons to cope with misfolded protein stress in the ER

    SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways.

    Get PDF
    The FERM-like domain-containing sorting nexins of the SNX17/SNX27/SNX31 family have been proposed to mediate retrieval of transmembrane proteins from the lysosomal pathway. In this paper, we describe a stable isotope labeling with amino acids in culture-based quantitative proteomic approach that allows an unbiased, global identification of transmembrane cargoes that are rescued from lysosomal degradation by SNX17. This screen revealed that several integrins required SNX17 for their stability, as depletion of SNX17 led to a loss of β1 and β5 integrins and associated a subunits from HeLa cells as a result of increased lysosomal degradation. SNX17 bound to the membrane distal NPXY motif in β integrin cytoplasmic tails, thereby preventing lysosomal degradation of β integrins and their associated a subunits. Furthermore, SNX17-dependent retrieval of integrins did not depend on the retromer complex. Consistent with an effect on integrin recycling, depletion of SNX17 also caused alterations in cell migration. Our data provide mechanistic insight into the retrieval of internalized integrins from the lysosomal degradation pathway, a prerequisite for subsequent recycling of these matrix receptors

    The giardial VPS35 retromer subunit is necessary for multimeric complex assembly and interaction with the Vacuolar protein sorting receptor

    Get PDF
    The retromer is a pentameric protein complex that mediates the retrograde transport of acid hydrolase receptors between endosomes and the trans-Golgi network and is conserved across all eukaryotes. Unlike other eukaryotes, the endomembrane system of Giardia trophozoite is simple and is composed only of the endoplasmic reticulum and peripheral vesicles (PVs), which may represent an ancient organellar system converging compartments such as early and late endosomes and lysosomes. Sorting and trafficking of membrane proteins and soluble hydrolases from the endoplasmic reticulum to the PVs have been described as specific and conserved but whether the giardial retromer participates in receptor recycling remains elusive. Homologs of the retromer Vacuolar Protein Sorting (Vps35p, Vps26p, and Vps29p) have been identified in this parasite. Cloning the GlVPS35 subunit and antisera production enabled the localization of this protein in the PVs as well as in the cytosol. Tagged expression of the subunits was used to demonstrate their association with membranes, and immunofluorescence confocal laser scanning revealed high degrees of colabeling between the retromer subunits and also with the endoplasmic reticulum and PV compartment markers. Protein-protein interaction data revealed interaction between the subunits of GlVPS35 and the cytosolic domain of the hydrolase receptor GlVps. Altogether our data provide original information on the molecular interactions that mediate assembly of the cargo-selective retromer subcomplex and its involvement in the recycling of the acid hydrolase receptor in this parasite.Fil: Miras, Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra; ArgentinaFil: Merino, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra; ArgentinaFil: Gottig Schor, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Ropolo, Andrea Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra; ArgentinaFil: Touz, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra; Argentin

    GLS-1, a Novel P Granule Component, Modulates a Network of Conserved RNA Regulators to Influence Germ Cell Fate Decisions

    Get PDF
    Post-transcriptional regulatory mechanisms are widely used to influence cell fate decisions in germ cells, early embryos, and neurons. Many conserved cytoplasmic RNA regulatory proteins associate with each other and assemble on target mRNAs, forming ribonucleoprotein (RNP) complexes, to control the mRNAs translational output. How these RNA regulatory networks are orchestrated during development to regulate cell fate decisions remains elusive. We addressed this problem by focusing on Caenorhabditis elegans germline development, an exemplar of post-transcriptional control mechanisms. Here, we report the discovery of GLS-1, a new factor required for many aspects of germline development, including the oocyte cell fate in hermaphrodites and germline survival. We find that GLS-1 is a cytoplasmic protein that localizes in germ cells dynamically to germplasm (P) granules. Furthermore, its functions depend on its ability to form a protein complex with the RNA-binding Bicaudal-C ortholog GLD-3, a translational activator and P granule component important for similar germ cell fate decisions. Based on genetic epistasis experiments and in vitro competition experiments, we suggest that GLS-1 releases FBF/Pumilio from GLD-3 repression. This facilitates the sperm-to-oocyte switch, as liberated FBF represses the translation of mRNAs encoding spermatogenesis-promoting factors. Our proposed molecular mechanism is based on the GLS-1 protein acting as a molecular mimic of FBF/Pumilio. Furthermore, we suggest that a maternal GLS-1/GLD-3 complex in early embryos promotes the expression of mRNAs encoding germline survival factors. Our work identifies GLS-1 as a fundamental regulator of germline development. GLS-1 directs germ cell fate decisions by modulating the availability and activity of a single translational network component, GLD-3. Hence, the elucidation of the mechanisms underlying GLS-1 functions provides a new example of how conserved machinery can be developmentally manipulated to influence cell fate decisions and tissue development

    Wnt secretion and gradient formation.

    Get PDF
    Concentration gradients formed by the lipid-modified morphogens of the Wnt family are known for their pivotal roles during embryogenesis and adult tissue homeostasis. Wnt morphogens are also implicated in a variety of human diseases, especially cancer. Therefore, the signaling cascades triggered by Wnts have received considerable attention during recent decades. However, how Wnts are secreted and how concentration gradients are formed remains poorly understood. The use of model organisms such as Drosophila melanogaster has provided important advances in this area. For instance, we have previously shown that the lipid raft-associated reggie/flotillin proteins influence Wnt secretion and spreading in Drosophila. Our work supports the notion that producing cells secrete Wnt molecules in at least two pools: a poorly diffusible one and a reggie/flotillin-dependent highly diffusible pool which allows morphogen spreading over long distances away from its source of production. Here we revise the current views of Wnt secretion and spreading, and propose two models for the role of the reggie/flotillin proteins in these processes: (i) reggies/flotillins regulate the basolateral endocytosis of the poorly diffusible, membrane-bound Wnt pool, which is then sorted and secreted to apical compartments for long-range diffusion, and (ii) lipid rafts organized by reggies/flotillins serve as "dating points" where extracellular Wnt transiently interacts with lipoprotein receptors to allow its capture and further spreading via lipoprotein particles. We further discuss these processes in the context of human breast cancer. A better understanding of these phenomena may be relevant for identification of novel drug targets and therapeutic strategies

    Retromer and Its Role in Regulating Signaling at Endosomes.

    Get PDF
    The retromer complex is a key element of the endosomal protein sorting machinery being involved in trafficking of proteins from endosomes to the Golgi and also endosomes to the cell surface. There is now accumulating evidence that retromer also has a prominent role in regulating the activity of many diverse signaling proteins that traffic through endosomes and this activity has profound implications for the functioning of many different cell and tissue types from neuronal cells to cells of the immune system to specialized polarized epithelial cells of the retina. In this review, the protein composition of the retromer complex will be described along with many of the accessory factors that facilitate retromer-mediated endosomal protein sorting to detail how retromer activity contributes to the regulation of several distinct signaling pathways
    corecore