27 research outputs found

    Asset Pricing Model Conditional on Up and Down Market for Emerging Market: The Case of Pakistan

    Get PDF
    This study proposes an asset pricing model conditional on up and down market for emerging market and tests its validity in Pakistan on individual stocks of Karachi Stock Exchange from July 2004 to December 2012. The basic capital asset pricing model is also tested. The results indicate that when emerging market undergoes negative market excess return, basic capital asset pricing model is inaccurate to predict stock returns. Although the conditional asset pricing model accurately predicts the risk-return trade off with beta as sole determinant of stock returns when there is up market, however yet it is significantly variant during down market where significant impact of residuals is evinced on stock returns.  The market excess returns of up and down markets are also found asymmetric. The study implies that conditional asset pricing model can be an adequate technique for investors and portfolio managers considering investments in emerging markets. Keywords: Asset Pricing Model, Conditional, Pakistan, Emerging Market, Up Market, Down Market. JEL Codes: C21, C22, G10, G12, G1

    Comparing the effect of Hypoalbuminemia on Sodium measured by Indirect versus Direct Ion Selective Electrode Method

    Get PDF
    Objective: To evaluate the effect of low serum Albumin levels on serum sodium measurement when analyzed by the indirect Ion Selective Electrode (ISE) method and to compare the results with the direct Ion selective electrode (ISE) method. Study Design: Cross-sectional study Place and Duration of Study: Department of Chemical Pathology, Armed Forces Institute of Pathology, Rawalpindi Pakistan, from Jan to Mar 2021. Methodology: Patients of either gender, aged 18 to 70 years, who were admitted to the Intensive Care Unit of Combined Military Hospital, Rawalpindi, were selected. A total of 200 blood samples were collected in a gel tube. Serum samples were analyzed for albumin and sodium within two hours of sample collection. Sodium levels were measured concurrently by both direct and indirect ISE methods. The difference in results between these two techniques was studied. Results: Hypoalbuminemia was detected in 176(88%) patients, while 24(12%) had normal albumin levels. In Hypoalbuminemic patients, serum sodium measurements were higher using the indirect ISE method(134.07±5.55) compared to the direct ISE method (130.95±6.04); the difference between the two techniques was statistically significant (p-value <0.001).Pearson correlation coefficient (r-value = -0.86, p-value <0.001) revealed a symmetrical increase in differences between the two methods as the albumin level decreased. Conclusion: In Hypoalbuminemic patients, the indirect ISE method gave falsely raised results of serum sodium. In such patients, serum sodium measurement by the Direct ISE method offers more accurate and consistent electrolyte results

    Validation of Vanillylmandelic Acid (VMA) with Plasma Metanephrine and Normetanephrine for Screening Adrenal Medullary Disorders

    Get PDF
    Objective: To validate urinary Vanillylmandelic acid (VMA) for screening adrenal medullary disorders, taking plasma-free Metanephrine as the gold standard. Study Design: Cross-sectional validation study. Place and Duration of Study: Department of Chemical Pathology and Endocrinology, Armed Forces Institute of Pathology,Rawalpindi, in collaboration with Armed Forces Institute of Urology, Rawalpindi from Pakistan, Jan 2020 to Mar 2021. Methodology: One hundred and thirty (130) symptomatic hypertensive patients with adrenal masses on ultrasound were selected Urine and blood samples were collected under specified conditions after taking necessary precautions and subsequently analyzed. Taking plasma Metanephrine as a reference, sensitivity, specificity and predictive values were calculated at predefined cut-off values. Results: In a young population with a mean age of 28.55±5.54 years, headache, palpitations and sweating were the predominant symptoms having a frequency of 130(100%), 116(89.2%) and 111(85.4%), respectively. Twenty-four hours urinary Vanillylmandelic acid had lower sensitivity (66.3%) than a random urinary VMA/cr ratio (72.1%) but similar specificity(97.7%). On the other hand, plasma-free Normetanephrine had 100% sensitivity but lower specificity (93.2%). ROC curve was plotted, and AUC for 24 hours urinary VMA, urinary VMA/cr ratio and plasma-free Normetanephrine were 0.820, 0.849 and0.966, respectively. Conclusion: Plasma-free Metanephrine could be used for screening pheochromocytoma and other adrenal medullary disorders like paraganglionoma. In addition, VMA/cr ratio can be used for biochemical confirmation of the disease owing to the high specificity found in our study

    Immature Platelet Fraction in Patients with Chronic Liver Disease, A Marker for Evaluating Cirrhotic Changes.

    Get PDF
    Objective: To evaluate the role of Immature platelet fraction in patients with chronic liver disease, a marker for evaluating cirrhotic changes. Methodology: This case control study was conducted at department of Pathology, Aziz Fatima Medical and Dental College, Faisalabad, over a period of Seven months from June 2020 to January 2021. A total of 126 participants were included in the study consisting of 63 patients with chronic liver disease in group A and 63 participants without any known disease in group B as control. The IPF master program in combination with XE-2100 multiparameter automatic hematology analyzer was used to measure the immature platelet fraction. Ethylene diamine tetraacetic acid was used to collect the blood sample for IPF measurement and was maintained till analysis on room temperature. Ten repeated analyses, immediately and after 24 hours were done for reproducibility of IPF%. Results: The mean age of liver disease patients was 52.35 ± 13.64 years and in control group the mean age was 51.62 ± 11.27 years. There was no significant (p-value &gt; 0.05) difference between both groups based on age and gender. The hemoglobin level and red cell count was found to be significantly (p-value &lt; 0.05) reduced in cases group. While white blood cells count was comparable in both groups. The mean platelet count was significantly (p-value &lt; 0.05) less in cases group (163.5 ± 90.4 vs 233.4 ± 54.5 (x10*3/µl). The mean value of immature platelet fraction (IPF%) was significantly (p-value &lt; 0.05) raised in cases group (5.62 ± 2.92 vs 3.06 ± 1.87). The multivariate discriminant analysis (MDA) score showed a significant (p-value &lt; 0.05) association with chronic hepatis as compared to other liver related diseases. Conclusions: In chronic liver disease patients, there is an inverse relationship between platelet count and IPF% with decreased platelet count and increased IPF%. The proposed MDA function can be used to identify the cirrhotic changes in liver disease patients

    The application of artificial intelligence in diabetic retinopathy screening: a Saudi Arabian perspective

    Get PDF
    IntroductionDiabetic retinopathy (DR) is the leading cause of preventable blindness in Saudi Arabia. With a prevalence of up to 40% of patients with diabetes, DR constitutes a significant public health burden on the country. Saudi Arabia has not yet established a national screening program for DR. Mounting evidence shows that Artificial intelligence (AI)-based DR screening programs are slowly becoming superior to traditional screening, with the COVID-19 pandemic accelerating research into this topic as well as changing the outlook of the public toward it. The main objective of this study is to evaluate the perception and acceptance of AI in DR screening among eye care professionals in Saudi Arabia.MethodsA cross-sectional study using a self-administered online-based questionnaire was distributed by email through the registry of the Saudi Commission For Health Specialties (SCFHS). 309 ophthalmologists and physicians involved in diabetic eye care in Saudi Arabia participated in the study. Data analysis was done by SPSS, and a value of p &lt; 0.05 was considered significant for statistical purposes.Results54% of participants rated their level of AI knowledge as above average and 63% believed that AI and telemedicine are interchangeable. 66% believed that AI would decrease the workforce of physicians. 79% expected clinical efficiency to increase with AI. Around 50% of participants expected AI to be implemented in the next 5 years.DiscussionMost participants reported good knowledge about AI. Physicians with more clinical experience and those who used e-health apps in clinical practice regarded their AI knowledge as higher than their peers. Perceived knowledge was strongly related to acceptance of the benefits of AI-based DR screening. In general, there was a positive attitude toward AI-based DR screening. However, concerns related to the labor market and data confidentiality were evident. There should be further education and awareness about the topic

    Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial

    Get PDF
    Background: Tranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding. Methods: We did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124. Findings: Between July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98). Interpretation: We found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10&nbsp;years; 78.2% included were male with a median age of 37&nbsp;years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore