3,069 research outputs found
Performance of the Beetle readout chip for LHCb
Beetle is a 128-channel readout chip, which will be used in the silicon vertex detector, the pile-up veto counters and the silicon tracker of the LHCb experiment at CERN. A further application of the Beetle chip is the readout of the LHCb RICH, in case it is equipped with multi-anode PMTs.
The scope of this paper is the design changes leading to the latest version 1.3 of the Beetle readout chip. In addition, measurements on earlier versions and simulation results driving these changes are shown
Much Ado About Leptoquarks: A Comprehensive Analysis
We examine the phenomenological implications of a 200 GeV leptoquark in light
of the recent excess of events at HERA. Given the relative predictions of
events rates in e^+p versus e^-p, we demonstrate that classes of leptoquarks
may be excluded, including those contained in E_6 GUT models. It is shown that
future studies with polarized beams at HERA could reveal the chirality of the
leptoquark fermionic coupling and that given sufficient luminosity in each
e^\pm_{L,R} channel the leptoquark quantum numbers could be determined. The
implications of 200-220 GeV leptoquarks at the Tevatron are examined. While
present Tevatron data most likely excludes vector leptoquarks and leptogluons
in this mass region, it does allow for scalar leptoquarks. We find that while
leptoquarks have little influence on Drell-Yan production, further studies at
the Main Injector are possible in the single production channel. We investigate
precision electroweak measurements as well as the process e^+e^-\to q\bar q at
LEP II and find they provide no further restrictions on these leptoquark
models. We then ascertain that cross section and polarization asymmetry
measurements at the NLC provide the only direct mechanism to determine the
leptoquark's electroweak quantum numbers. The single production of leptoquarks
in \gamma e collisions by both the backscattered laser and Weisacker-Williams
techniques at the NLC is also discussed. Finally, we demonstrate that we can
obtain successful coupling constant unification in models with leptoquarks,
both with or without supersymmetry. The supersymmetric case requires the GUT
group to be larger than SU(5) such as flipped SU(5)\times U(1)_X.Comment: Corrected single production cross section at Tevatron, updated atomic
parity violation constraints, 55 page
Measurement of the diffractive structure function in deep inelastic scattering at HERA
This paper presents an analysis of the inclusive properties of diffractive
deep inelastic scattering events produced in interactions at HERA. The
events are characterised by a rapidity gap between the outgoing proton system
and the remaining hadronic system. Inclusive distributions are presented and
compared with Monte Carlo models for diffractive processes. The data are
consistent with models where the pomeron structure function has a hard and a
soft contribution. The diffractive structure function is measured as a function
of \xpom, the momentum fraction lost by the proton, of , the momentum
fraction of the struck quark with respect to \xpom, and of . The \xpom
dependence is consistent with the form \xpoma where
in all bins of and
. In the measured range, the diffractive structure function
approximately scales with at fixed . In an Ingelman-Schlein type
model, where commonly used pomeron flux factor normalisations are assumed, it
is found that the quarks within the pomeron do not saturate the momentum sum
rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil
Enhanced Radiation Hardness and Faster Front Ends for the Beetle Readout Chip
This paper summarizes the recent progress in the development of the 128 channel pipelined readout chip Beetle, which is intended for the silicon vertex detector, the inner tracker, the pile-up veto trigger and the RICH detectors of LHCb.
Deficiencies found in the front end of the Beetle Version 1.0 and 1.1 chips resulted in the submissions of BeetleFE 1.1 and BeetleFE 1.2, while BeetleSR 1.0 implements test circuits to provide future Beetle chips with logic circuits hardened against single event upset (SEU).
Section I. motivates the development of new front ends for the Beetle chip, and section II. summarizes their concepts and construction. Section III. reports preliminary results from the BeetleFE 1.1 and BeetleFE 1.2 chips, while section IV. describes the BeetleSR 1.0 chip. An outlook on future test and development of the Beetle chip is given in section V
Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA
Inclusive photoproduction of D*+- mesons has been measured for photon-proton
centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality
Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of
37 pb^-1. Total and differential cross sections as functions of the D*
transverse momentum and pseudorapidity are presented in restricted kinematical
regions and the data are compared with next-to-leading order (NLO) perturbative
QCD calculations using the "massive charm" and "massless charm" schemes. The
measured cross sections are generally above the NLO calculations, in particular
in the forward (proton) direction. The large data sample also allows the study
of dijet production associated with charm. A significant resolved as well as a
direct photon component contribute to the cross section. Leading order QCD
Monte Carlo calculations indicate that the resolved contribution arises from a
significant charm component in the photon. A massive charm NLO parton level
calculation yields lower cross sections compared to the measured results in a
kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure
Observation of two new baryon resonances
Two structures are observed close to the kinematic threshold in the mass spectrum in a sample of proton-proton collision data, corresponding
to an integrated luminosity of 3.0 fb recorded by the LHCb experiment.
In the quark model, two baryonic resonances with quark content are
expected in this mass region: the spin-parity and
states, denoted and .
Interpreting the structures as these resonances, we measure the mass
differences and the width of the heavier state to be
MeV,
MeV,
MeV, where the first and second
uncertainties are statistical and systematic, respectively. The width of the
lighter state is consistent with zero, and we place an upper limit of
MeV at 95% confidence level. Relative
production rates of these states are also reported.Comment: 17 pages, 2 figure
Observation of resonances consistent with pentaquark states in decays
Observations of exotic structures in the channel, that we refer to
as pentaquark-charmonium states, in decays are
presented. The data sample corresponds to an integrated luminosity of 3/fb
acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude
analysis is performed on the three-body final-state that reproduces the
two-body mass and angular distributions. To obtain a satisfactory fit of the
structures seen in the mass spectrum, it is necessary to include two
Breit-Wigner amplitudes that each describe a resonant state. The significance
of each of these resonances is more than 9 standard deviations. One has a mass
of MeV and a width of MeV, while the second
is narrower, with a mass of MeV and a width of MeV. The preferred assignments are of opposite parity, with one
state having spin 3/2 and the other 5/2.Comment: 48 pages, 18 figures including the supplementary material, v2 after
referee's comments, now 19 figure
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
- …