837 research outputs found

    Semi-automated image analysis for the identification of bivalve larvae from a Cape Cod estuary

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 10 (2012): 538-554, doi:10.4319/lom.2012.10.538.Machine-learning methods for identifying planktonic organisms are becoming well-established. Although similar morphologies among species make traditional image identification methods difficult for larval bivalves, species-specific shell birefringence patterns under polarized light permit identification by color and texture-based features. This approach uses cross-polarized images of bivalve larvae, extracts Gabor and color angle features from each image, and classifies images using a Support Vector Machine. We adapted this method, which was established on hatchery-reared larvae, to identify bivalve larvae from a series of field samples from a Cape Cod estuary in 2009. This method had 98% identification accuracy for four hatchery-reared species. We used a multiplex polymerase chain reaction (PCR) method to confirm field identifications and to compare accuracies to the software classifications. Image classification of larvae collected in the field had lower accuracies than both the classification of hatchery species and PCR-based identification due to error in visually classifying unknown larvae and variability in larval images from the field. A six-species field training set had the best correspondence to our visual classifications with 75% overall agreement and individual species agreements from 63% to 88%. Larval abundance estimates for a time-series of field samples showed good correspondence with visual methods after correction. Overall, this approach represents a cost- and time-saving alternative to molecular-based identifications and can produce sufficient results to address long-term abundance and transport-based questions on a species-specific level, a rarity in studies of bivalve larvae.This project was supported by an award to S. Gallager and C. Mingione Thompson from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration and a grant from Woods Hole Oceanographic Institution’s Coastal Ocean Institute

    Hybridization between previously isolated ancestors may explain the persistence of exactly two ancient lineages in the genome of the oyster parasite Perkinsus marinus

    Get PDF
    AbstractTheory predicts that neutral genetic variation accumulates within populations to a level determined by gains through mutation and losses by genetic drift. This balance results in a characteristic distribution of allelic variation with the maximum allelic difference determined by effective population size. Here, we report a striking departure from these expectations in the form of allelic dimorphism, observed at the majority of seven loci examined in Perkinsus marinus, an important oyster parasite that causes Dermo disease. DNA sequences were collected from five loci flanking microsatellite repeats and two loci coding for superoxide dismutase enzymes that may mediate the parasite’s interaction with its host. Based on 474 sequences, sampled across 5000km of the eastern United States coastline, no more than two alleles were observed at each locus (discounting singletons). Depending on the locus, the common allele ranged in overall frequency from 72% to 92%. At each locus the two alleles differed substantially (3.8% sequence difference, on average), and the among-locus variance in divergences was not sufficient to reject a simultaneous origin for all dimorphisms using approximate Bayesian methods. Dimorphic alleles were estimated to have diverged from a common ancestral allele at least 0.9 million years ago. Across these seven loci, only five other alleles were ever observed, always as singletons and differing from the dimorphic alleles by no more than two nucleotides. Free recombination could potentially have shuffled these dimorphisms into as many as 243 multilocus combinations, but the existence of only ten combinations among all samples strongly supports low recombination frequencies and is consistent with the observed absence of intragenic recombination. We consider several demographic and evolutionary hypotheses to explain these patterns. Few can be conclusively rejected with the present data, but we advance a recent hybridization of ancient divergent lineages scenario as the most parsimonious

    Large-scale variation in density of an aquatic ecosystem indicator species

    Get PDF
    Funding: This work was supported by the New York State Department of Environmental Conservation and the Hudson River Natural Resource Trustees.Monitoring indicator species is a pragmatic approach to natural resource assessments, especially when the link between the indicator species and ecosystem state is well justified. However, conducting ecosystem assessments over representative spatial scales that are insensitive to local heterogeneity is challenging. We examine the link between polychlorinated biphenyl (PCB) contamination and population density of an aquatic habitat specialist over a large spatial scale using non-invasive genetic spatial capture-recapture. Using American mink (Neovison vison), a predatory mammal and an indicator of aquatic ecosystems, we compared estimates of density in two major river systems, one with extremely high levels of PCB contamination (Hudson River), and a hydrologically independent river with lower PCB levels (Mohawk River). Our work supports the hypothesis that mink densities are substantially (1.64-1.67 times) lower in the contaminated river system. We demonstrate the value of coupling the indicator species concept with well-conceived and spatially representative monitoring protocols. PCBs have demonstrable detrimental effects on aquatic ecosystems, including mink, and these effects are likely to be profound and long-lasting, manifesting as population-level impacts. Through integrating non-invasive data collection, genetic analysis, and spatial capture-recapture methods, we present a monitoring framework for generating robust density estimates across large spatial scales.Publisher PDFPeer reviewe

    Understanding and Estimating Effective Population Size for Practical Application in Marine Species Management

    Get PDF
    Effective population size (Ne) determines the strength of genetic drift in a population and has long been recognized as an important parameter for evaluating conservation status and threats to genetic health of populations. Specifically, an estimate of Ne is crucial to management because it integrates genetic effects with the life history of the species, allowing for predictions of a population’s current and future viability. Nevertheless, compared with ecological and demographic parameters, Ne has had limited influence on species management, beyond its application in very small populations. Recent developments have substantially improved Ne estimation; however, some obstacles remain for the practical application of Ne estimates. For example, the need to define the spatial and temporal scale of measurement makes the concept complex and sometimes difficult to interpret. We reviewed approaches to estimation of Ne over both long-term and contemporary time frames, clarifying their interpretations with respect to local populations and the global metapopulation. We describe multiple experimental factors affecting robustness of contemporary Ne estimates and suggest that different sampling designs can be combined to compare largely independent measures of Ne for improved confidence in the result. Large populations with moderate gene flow pose the greatest challenges to robust estimation of contemporary Ne and require careful consideration of sampling and analysis to minimize estimator bias. We emphasize the practical utility of estimating Ne by highlighting its relevance to the adaptive potential of a population and describing applications in management of marine populations, where the focus is not always on critically endangered populations. Two cases discussed include the mechanisms generating Ne estimates many orders of magnitude lower than census N in harvested marine fishes and the predicted reduction in Ne from hatchery-based population supplementation

    Understanding and Estimating Effective Population Size for Practical Application in Marine Species Management

    Get PDF
    Effective population size (Ne) determines the strength of genetic drift in a population and has long been recognized as an important parameter for evaluating conservation status and threats to genetic health of populations. Specifically, an estimate of Ne is crucial to management because it integrates genetic effects with the life history of the species, allowing for predictions of a population’s current and future viability. Nevertheless, compared with ecological and demographic parameters, Ne has had limited influence on species management, beyond its application in very small populations. Recent developments have substantially improved Ne estimation; however, some obstacles remain for the practical application of Ne estimates. For example, the need to define the spatial and temporal scale of measurement makes the concept complex and sometimes difficult to interpret. We reviewed approaches to estimation of Ne over both long-term and contemporary time frames, clarifying their interpretations with respect to local populations and the global metapopulation. We describe multiple experimental factors affecting robustness of contemporary Ne estimates and suggest that different sampling designs can be combined to compare largely independent measures of Ne for improved confidence in the result. Large populations with moderate gene flow pose the greatest challenges to robust estimation of contemporary Ne and require careful consideration of sampling and analysis to minimize estimator bias. We emphasize the practical utility of estimating Ne by highlighting its relevance to the adaptive potential of a population and describing applications in management of marine populations, where the focus is not always on critically endangered populations. Two cases discussed include the mechanisms generating Ne estimates many orders of magnitude lower than census N in harvested marine fishes and the predicted reduction in Ne from hatchery-based population supplementation

    Genetic diversity and expanding nonindigenous range of the rhizocephalan Loxothylacus panopaei parasitizing mud crabs in the western North Atlantic

    Get PDF
    Nonindigenous parasite introductions and range expansions have become a major concern because of their potential to restructure communities and impact fisheries. Molecular markers provide an important tool for reconstructing the pattern of introduction. The parasitic castrator Loxothylacus panopaei, a rhizocephalan barnacle, infects estuarine mud crabs in the Gulf of Mexico and southeastern Florida. A similar parasite introduced into Chesapeake Bay before 1964, presumably via infected crabs associated with oysters from the Gulf of Mexico, was identified as L. panopaei. Our samples of this species during 2004 and 2005 show that the introduced range has expanded as far south as Edgewater, Florida, just north of the northern endemic range limit. The nonindigenous range expanded southward at a rate of up to 165 km/yr with relatively high prevalence, ranging from 30 to 93%. Mitochondrial DNA sequences from the cytochrome oxidase I gene showed that these nonindigenous L. panopaei are genetically distinct from the endemic parasites in southeastern Florida and the eastern Gulf of Mexico. The genetic difference was also associated with distinct host spectra. These results are incompatible with an eastern Gulf source population, but suggest that unrecognized genetic and phenotypic population structure may occur among Gulf of Mexico populations of Loxothvlacu

    CoQ10 and Cognition a Review and Study Protocol for a 90-Day Randomized Controlled Trial Investigating the Cognitive Effects of Ubiquinol in the Healthy Elderly

    Get PDF
    Introduction: With an aging population there is an important need for the development of effective treatments for the amelioration of cognitive decline. Multiple mechanisms underlie age-related cognitive decline including cerebrovascular disease, oxidative stress, reduced antioxidant capacity and mitochondrial dysfunction. CoQ10 is a novel treatment which has the potential to improve brain function in healthy elderly populations due to established beneficial effects on mitochondrial function, vascular function and oxidative stress.Methods and Analysis: We describe the protocol for a 90-day randomized controlled trial which examines the efficacy of Ubiquinol (200 mg/day) vs. placebo for the amelioration of cognitive decline in a healthy (non-demented) elderly sample, aged 60 years and over. The primary outcome is the effect of Ubiquinol at 90 days compared to baseline on CogTrack composite measures of cognition. Additional cognitive measures, as well as measures of cardiovascular function, oxidative stress, liver function and mood will also be monitored across 30-, 60- and 90- day time points. Data analyses will involve repeated measures analysis of variance (ANOVA).Discussion: This study will be the first of its kind to provide important clinical and mechanistic data regarding the efficacy of Ubiquinol as a treatment for age-related cognitive decline in the healthy elderly with important implications for productivity and quality of life within this age group.Clinical Trial Registration: The trial has been registered with the Australian and New Zealand Clinical Trials Registry (ANZCTRN12618001841268)

    The Effect of Male Incarceration on Rape Myth Acceptance: Application of Propensity Score Matching Technique

    Get PDF
    The aim is to assess the effect of imprisonment on rape myth acceptance. The research used a sample of male prisoners incarcerated for non-sexual crimes (n = 98) and a sample of males drawn from the general population (n = 160). Simple linear regression did not indicate a significant effect of incarceration on rape myth acceptance. After controlling for background covariates using propensity score matching, analysis revealed a positive significant effect of incarceration on rape myth acceptance. Although further research is required, results indicate that being subject to incarceration has a significant positive effect on stereotypical thinking about rape

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    FeCycle: Attempting an iron biogeochemcial budget from a mesoscale SF 6 tracer experiment in unpertutbed low iron waters

    Get PDF
    An improved knowledge of iron biogeochemistry is needed to better understand key controls on the functioning of high-nitrate low-chlorophyll (HNLC) oceanic regions. Iron budgets for HNLC waters have been constructed using data from disparate sources ranging from laboratory algal cultures to ocean physics. In summer 2003 we conducted FeCycle, a 10-day mesoscale tracer release in HNLC waters SE of New Zealand, and measured concurrently all sources (with the exception of aerosol deposition) to, sinks of iron from, and rates of iron recycling within, the surface mixed layer. A pelagic iron budget (timescale of days) indicated that oceanic supply terms (lateral advection and vertical diffusion) were relatively small compared to the main sink (downward particulate export). Remote sensing and terrestrial monitoring reveal 13 dust or wildfire events in Australia, prior to and during FeCycle, one of which may have deposited iron at the study location. However, iron deposition rates cannot be derived from such observations, illustrating the difficulties in closing iron budgets without quantification of episodic atmospheric supply. Despite the threefold uncertainties reported for rates of aerosol deposition (Duce et al., 1991), published atmospheric iron supply for the New Zealand region is ∼50-fold (i.e., 7-to 150-fold) greater than the oceanic iron supply measured in our budget, and thus was comparable (i.e., a third to threefold) to our estimates of downward export of particulate iron. During FeCycle, the fluxes due to short term (hours) biological iron uptake and regeneration were indicative of rapid recycling and were tenfold greater than for new iron (i.e. estimated atmospheric and measured oceanic supply), giving an "fe" ratio (uptake of new iron/ uptake of new + regenerated iron) of 0.17 (i.e., a range of 0.06 to 0.51 due to uncertainties on aerosol iron supply), and an "Fe" ratio (biogenic Fe export/uptake of new + regenerated iron) of 0.09 (i.e., 0.03 to 0.24)
    corecore